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Buckling analysis of graphene nanosheets based on nonlocal 

elasticity theory 
 

 

 

ABSTRACT 

 
   This paper proposed analytical solutions for the buckling 

analysis of rectangular single-layered graphene sheets under in-plane 

loading on all edges simply is supported. The characteristic equations of 

the graphene sheets are derived and the analysis formula is based on the 

nonlocal Mindlin plate. This theory is considering both the small length 

scale effects and transverse shear deformation effect. Nonlocal elasticity 

theory takes into account the small length scale effects as examining 

nanostructures such as nanoplates. It is presented graphically that the 

small scale or nonlocal effects on the nondimensional buckling loads in 

the presence of aspect ratio and buckling modes. 
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INTRODUCTION 
 

 Since the discovery of carbon nanostructures like graphene 

sheets, fullerenes and carbon nanotubes, numerous researches have 

been conducted on their superior mechanical and electronic properties 

[1,2]. In this paper, an analysis of the mechanical properties for a two-

dimensional (2D) allotrope of the carbon family comprising of self-

aligned graphene sheets is studied. Graphene sheets can be applied in 

micro nanoscale technologies like micro/nano-electromechanical 

systems (MEMS and NEMS) and atomic dust detectors as a platform 

for nano-electronic devices and biological sensors [3,4]. A few 

investigations concerning the classical elasticity theory for 

interpretation of the mechanical characteristics of graphene sheets or 

nanoplates have been reported in the literature [5-7]. The classical 

elasticity theory does not enable to compare of fundamental size-

dependence in the elastic solutions of micro/nanostructures [6].  
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 Hence, the nonlocal elasticity theory, which 

is the modified version of the local elasticity theory 

through considering the small scale effect of the 

entire micro/nanostructure of materials, provides us 

with a current theory to cope with small scale 

influence [9]. These size-effects are associated with 

atoms and molecules that form the materials. The 

effects of long-range interatomic and 

intermolecular cohesive forces on the static, 

buckling and dynamic properties cannot be 

neglected as the length scales are reduced. A 

nonlocal plate model was first reported to examine 

the small length scale effect on the nanoplates and 

displayed that the nonlocal elasticity theory would 

play a significant role in the study of 

micro/nanoscale structures [8,10]. Duan and Wang 

[11] studied the axisymmetric bending of micro- 

and nanoscale circular plates using a nonlocal plate 

theory. Their results showed that the deflections, 

shear forces and moments became larger than a 

local plate model. Recently, Murmu and Pradhan 

[12] investigated buckling behavior of orthotropic 

small length scale plates under biaxial compression 

based on nonlocal Kirchhoff plate theory. In this 

paper, the major objective is to extend a nonlocal 

plate model for the single layer graphene sheet 

under in-plane loading and applied it to find the 

small length scale influences on nondimensional 

loads. Explicit relations for buckling loads are 

obtained. It has been shown that nonlocal effect is 

quite significant in buckling analysis studies and 

needs to be included in the continuum model of 

single-layered graphene sheets. 

 

 

EXPERIMENTAL 
 

Nonlocal Mindlin plate model 

 Nonlocal elasticity theory states that the 

stress at a reference point χ in an elastic body relies 

not only on strain at aforementioned point but also 

on the strains at all other points in the same body 

[12]. The nonlocal constitutive relations can be 

simplified as follows 

 

 1 − 𝜏2𝑙2∇2 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙                   (1) 

  

 Where 𝜎𝑖𝑗  and 𝐶𝑖𝑗  are the stress tensor of 

the nonlocal elasticity and the classical stress 

tensor, which is related to the linear strain 

tensor 𝜀𝑘𝑙 , respectively. 𝜏 = 𝑒0𝑎 𝑙  is nonlocal 

parameter which is material constant that depends 

on 𝑎 and 𝑙 the internal (such as the carbon-carbon 

bond length) and external (graphene nano-sheet 

length) characteristics length of the system, 

respectively. 𝑒0 is nonlocal elasticity constant 

appropriate to each material [12]. In this approach, 

a single layer graphene sheet is modeled as a thick 

rectangular plate with thickness h, length 𝑙  and 

width 𝑏. A coordinate system  𝑥,𝑦, 𝑧  is used for 

the graphene sheet (Figure 1) with the 𝑥, 𝑦 and 𝑧 

axes along the length, width, and thickness of plate 

respectively. On the basis of the Mindlin plate 

theory, the displacement components can be 

expressed as 

 

𝑢𝑥 = 𝑢 𝑥,𝑦, 𝑧 + 𝑧ψ
𝑥

                                 (2.a) 

 

𝑢𝑦 = 𝑢 𝑥,𝑦, 𝑧 + 𝑧ψ
𝑦

                                (2.b) 

 

𝑢𝑧 = 𝑤 𝑥,𝑦, 𝑧                                         (2.c) 
 

Here,𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧  and 𝑡 are the rotational 

displacement about the 𝑦 axis, rotational 

displacement about the 𝑥 axis, transverse 

displacement, and the time variable, respectively. 

Using nonlocal constitutive relations, the stress 

constitutive relations can be written as 

 

 1 −  𝑒0𝑎 
2∇2 𝜎𝑥𝑥 =

𝐸

 1−𝜐2 
 𝜀𝑥𝑥 + 𝜐𝜀𝑦𝑦           (3.a) 

 

 1 −  𝑒0𝑎 
2∇2 𝜎𝑦𝑦 =

𝐸

 1−𝜐2 
 𝜀𝑦𝑦 + 𝜐𝜀𝑥𝑥            (3.b) 

 

 1 −  𝑒0𝑎 
2∇2 𝜎𝑥𝑦 = 2𝐺𝜀𝑥𝑦                     (3.c) 

 

 1 −  𝑒0𝑎 
2∇2 𝜎𝑥𝑧 = 2𝐺𝜀𝑥𝑧                     (3.d) 

 

 1 −  𝑒0𝑎 
2∇2 𝜎𝑦𝑧 = 2𝐺𝜀𝑦𝑧                     (3.e) 

 

Where,𝐸, 𝐺 and 𝜐 are the elastic 

moduli, shear modulus and poisson‘s ratio, 

respectively. The stress resultant-displacement 

relations can be derived by 

 

𝑀𝑖𝑗 =  𝜎𝑖𝑗 𝑧𝑑𝑧 ,
ℎ 2 

−ℎ 2 
     𝑖, 𝑗 = 𝑥, 𝑦           (4.a) 

 

𝑄𝑓 = 𝑘2  𝜎𝑖𝑗𝑑𝑧
ℎ 2 

−ℎ 2 
,    𝑓 = 𝑥,𝑦             (4.b) 
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Fig. 1. A continuum plate model of a single-layered graphene 
nanosheet. 

 

 

 Here 𝑀𝑥𝑥  and 𝑀𝑦𝑦  are the resultant 

moments per unit length, 𝑀𝑥𝑦  is the twisting 

moment per unit length, and 𝑄𝑥  and 𝑄𝑦  are the 

transverse shear forces per unit length and also here 

𝑘2 is the transverse shear correction coefficient. 

For this study, the biaxial compression loads 

are 𝑁𝑥𝑥 = 𝑁,𝑁𝑦𝑦 = 𝜇𝑁, 𝑁𝑥𝑦 = 0 and 𝜇 =

𝑁𝑥𝑥 𝑁𝑦𝑦 , Where 𝑁 and 𝜇 are the in-plane loading 

per unit length and the compression ratio, 

respectively. The governing differential equations 

of motion of the nonlocal Mindlin plate theory can 

be taken by 

 

𝛻2𝜓𝑥 +
1+𝜐

1−𝜐
 
𝜕2𝜓𝑥

𝜕𝑥
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
 −

2𝑘2𝐺ℎ

𝐷 1−𝜐 
𝜓𝑥 =

2𝑘2𝐺ℎ

𝐷 1−𝜐 

𝜕𝑤

𝜕𝑥
    

 

(5.a) 

 

𝛻2𝜓𝑦 +
1+𝜐

1−𝜐
 
𝜕2𝜓𝑦

𝜕𝑦
+

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
 −

2𝑘2𝐺ℎ

𝐷 1−𝜐 
𝜓𝑦 =

2𝑘2𝐺ℎ

𝐷 1−𝜐 

𝜕𝑤

𝜕𝑦
  

 

(5.b) 

 

 
𝜕𝜓𝑥

𝜕𝑥
+

𝜕𝜓𝑦

𝜕𝑦
 = −𝛻2𝑤 −

𝑁𝑥𝑥

𝑘2𝐺ℎ

𝜕2𝑤

𝜕𝑥2 −
𝑁𝑦𝑦

𝑘2𝐺ℎ

𝜕2𝑤

𝜕𝑦2 +

 𝑒0𝑎 
2

𝑘2𝐺ℎ
𝛻2  𝑁𝑥𝑥

𝜕2𝑤

𝜕𝑥2 + 𝑁𝑦𝑦
𝜕2𝑤

𝜕𝑦2   

 

(5.c) 

 

 In which 𝐷 = 𝐸ℎ3 12 1 − 𝜐2   and 

𝐺 = 𝐸 2 1 + 𝜐   are the flexural rigidity and the 

shear modulus, respectively. The governing 

differential equations (5) reduce to that of the 

classical Mindlin plate model when the nonlocal 

parameter  𝑒0𝑎  is set to zero [13]. 

 

Solution problem 
 The simply supported boundary 

conditions for the rectangular plate are 

 

𝑤 = 0, 𝜓𝑦 = 0 and 𝑀𝑥𝑥 = 0 at  𝑥 = 0, 𝑙    (6.a) 

 

𝑤 = 0, 𝜓𝑥 = 0 and 𝑀𝑦𝑦 = 0 at  𝑦 = 0, 𝑏  (6.b) 

 

 For the present problem, we assume the 

solution of governing equations (5) with 

satisfaction of equations (6) as  

 

𝜓𝑥 = 𝐴𝐶𝑜𝑠 𝛼𝑥 𝑆𝑖𝑛 𝛽𝑦                 (7.a) 

 

𝜓𝑦 = 𝐵𝑆𝑖𝑛 𝛼𝑥 𝐶𝑜𝑠 𝛽𝑦                 (7.b) 

 

𝑤 = 𝑊𝑆𝑖𝑛 𝛼𝑥 𝑆𝑖𝑛 𝛽𝑦                  (7.c) 

 

 Here 𝛼 = 𝑚𝜋 𝑙  and 𝛽 = 𝑛𝜋 𝑏 . 𝑚 and 𝑛 

are the half wave numbers. By substituting 

equations (7) into equations (5) we have 

 

         𝐴 3×3 𝑢 3×1 = 𝑁  𝑢 3×1                 (8)  

 

By solving the characteristic equation, which 

obtains from setting the determinant of the 

coefficient matrix  𝐴 3×3 equal to zero, the 

buckling loads in equation (8) are obtained as 

𝑁 = −𝑁𝑎2 𝐷 . 

 

 

RESULTS AND DISCUSSION 
 

 To illustrate the effect of small length 

scale on the buckling load of single-layered 

graphene sheet, buckling behavior is analyzed for 

different lengths, nonlocal parameter, buckling 

modes and aspect ratios. 

 Considering the graphene sheet with 

Poisson’s ratio, 𝜐 = 0.25, the transverse shear 

correction coefficient, 𝑘2 = 0.86667, Young’s 

modulus, 𝐸 = 1765 𝐺𝑃𝑎, compression ratio, 𝜇 =
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4, and the thickness, ℎ = 34 𝑛𝑚. The length 𝐿 of 

the graphene is assumed as between 5 to 50𝑛𝑚. 

For the choice of nonlocal parameter, we take, 

𝑒0𝑎 = 0.0, 0.5, 1.0, 1.5 and 2.0𝑛𝑚. 

 The buckling analysis of moderately 

thick rectangular plates with all the four edges 

simply supported under uniformly distributed in-

plane loads N represents for various geometries 

using nonlocal Mindlin plate theory. Figure 2 

depicts the nondimensional buckling load, 𝑁  versus 

the variation of length for a rectangular nanoplate 

at different nonlocal parameters 𝑒0𝑎 . The 

buckling modes numbers for this analysis is 

assumed as 𝑚 = 1,𝑛 = 1 . 
 From Figure 2, it is observed that 

nonlocal solution for buckling load is smaller than 

the classical solutions. This is attributed to the 

effect of small length scale. In addition, increasing 

the nonlocal parameter decreases the buckling load. 

This implies that increasing the nonlocal parameter 

leads to a decrease in stiffness of structure. In 

addition, as the length of the graphene sheets 

increases, the buckling load increases. This is due 

to with increase of length; the influence of nonlocal 

effect reduces. Furthermore, with further increase 

of length the curves become flat in nature. 

Approximately at 𝐿 ≥ 50𝑛𝑚 all results converge to 

the classical buckling load 𝑒0𝑎 = 0 . This implies 

that the nonlocal effect diminishes with increase of 

the graphene sheet length and vanishes after a 

certain length. 

 

 
 

Fig. 2. Variety of nondimensional buckling load with length of 
graphene sheet for different nonlocal parameters. 

 

To indicate the effect of higher buckling modes, 

nondimensional buckling load versus the variation 

of length at different nonlocal parameters is plotted 

in Figure 3 and 4. Figure 3 and 4 are shown for 

buckling modes,  𝑚 = 2,𝑛 = 1  and 𝑚 = 3,𝑛 =
1, respectively. Similar buckling load analysis as 

that of  𝑚 = 1,𝑛 = 1  is observed in these figures, 

i.e. nonlocal solutions are smaller than the 

corresponding classical solutions. However, 

nonlocal effects are highly prominent in buckling 

load of higher buckling modes. 

 

 
 

Fig. 3. Variety of nondimensional buckling load with length of 
graphene sheet for different nonlocal parameters. 

 

 
 

Fig. 4. Variety of nondimensional buckling load with length of 

graphene sheet for different nonlocal parameters. 
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 Nondimensional buckling loads 𝑁  versus 

various nonlocal parameters  𝑒0𝑎  for the 

rectangular Mindlin micro/nanoscale plate have 

been plotted in Figure 5. It can be observed that the 

small scale effects on nondimensional buckling 

load for biaxially compressed micro/nanoplates at 

higher modes. The figure represents the small scale 

coefficient has extreme effects on the 

nondimensional buckling loads and that increases 

the value of nondimensional buckling load of the 

single-layered graphene sheet decreases for all 

modes. 

 

 
 

Fig. 5. Influence of small scale effects on the nondimensional buckling 
load of Mindlin nanoplate for different mode number. 

 

 

 To illustrate the effect of small scale on 

the buckling load of nanoplates with different 

aspect ratios 𝑙 𝑏  has been considered. Four aspect 

ratios of the graphene sheet are considered and 

nondimensional buckling load has been plotted 

against nonlocal parameter in Figure 6. It can be 

observed that for a give nonlocal parameter, 

nondimensional buckling load is closer to 10 for 

higher aspect ratio. Further nonlocal effect would 

be associated with decreasing in aspect ratios. 

 

 

CONCLUSION 
 

In this study, nonlocal Mindlin plate 

model for buckling analysis of single-layered 

graphene sheets is presented using nonlocal 

continuum mechanics. Explicit relations for 

nondimensional buckling loads are obtained 

through direct separation of variables. The present 

nonlocal Mindlin plate model addresses the size 

effects through nonlocality. Both the small scale 

effect and the transverse shear deformation 

influence are considered to examine buckling 

behavior of graphene nanosheet by nonlocal 

Mindlin plate theory. Nonlocal effect and 

transverse shear deformation are less important in 

lower buckling modes, and they are significantly 

important in higher buckling modes. 

 

 
 

Fig. 6. Influence of small scale effects on the non-dimensional 

buckling load of Mindlin nanoplate for different aspect ratio. 
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