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ABSTRACT 

 
   Fabrication, characterization and application of micro-/nano-

rods/wires are among the hottest topics in materials science and applied 

physics. Micro-/nano-rod-based structures and devices are developed for 

a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, 

electronics, medicine, optics, optoelectronics, photonics and sensors). It 

is well known that the structure and properties of micro/nano rods depend 

greatly on their environment of application. Therefore, in this paper, 

torsional vibration of microbars is formulated based on the strain gradient 

theory to study the vibrational behavior at micro/nano scale. The strain 

gradient theory is a non-classical theory capable of capturing the size-

effects. The governing equation and both the classical and the non-

classical boundary conditions are derived employing the Hamilton’s 

principle. In the free-vibration case, the characteristic equation is derived 

and solved analytically. The torsional free-vibration behavior of a fixed-

fixed strain gradient microbar is investigated and the results are 

compared to those evaluated by the classical and modified couple stress 

theories noted that the two latter theories are special cases of the strain 

gradient theory. The effects of the length and the radius of the micro rods 

on the various modes of torsional natural frequencies are investigated in 

detail. The results of this study can be useful in the design and analysis of 

the next generation micro-electro-mechanical-systems and nano-electro-

mechanical-systems which uses the torsional vibration properties of the 

micro-/nano-rods. 

 

Keywords: Micro/nano rod; Strain gradient elasticity; Modified couple 

stress theory; Torsional vibration; Modenumber; Small scale. 

 

 

INTRODUCTION 
 

 With the rapid development of technology, micro rods and 

micro tubes with internal diameters smaller than 1 mm are often used 

in micro- and nano-electro-mechanical systems (MEMS and NEMS), 

such as those employed in atomic force microscopes [1], sensors [2], 

actuators [3], fluid and mass transport [4-6]. 
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 Moreover, understanding and controlling 

the motion of small particles is critical for micro- 

and nanoassembly, microfluidics, including 

biological and colloidal science applications, 

chemical mechanical polishing, and xerographic 

processes [7]. 

 The micro/nano solid/hollow rods 

subjected to torsional loads and torsional 

displacements are widely used in various kinds of 

MEMS/NEMS such as micro-gyroscopes [8,9], 

torsional microscanners [10], torsional 

micromirrors [9,11,12] and torsional spring in 

NEMS oscillators [13]. Hence, the accurate 

modeling of the static and dynamic torsional 

behavior of micro/nano bars seems to be crucial in 

studying the mechanical behaviors of these 

micro/nano systems. 

 Since the classical continuum mechanics is 

incapable of capturing the size effect and 

consequently unable to predict and interpret the 

size-dependent static and vibration behavior 

observed in micro-scaled structures, during past 

years, some non-classical continuum theories such 

as the nonlocal, strain gradient and couple stress 

theories have been introduced, developed and 

employed to investigate the micro-scaled structures. 

In these non-classical theories, some material 

parameters are considered in addition to the two 

classical parameters, elastic modulus and Poisson 

ratio, which enable these theories to capture the 

size-dependency. For example, in the modified 

couple stress theory, due to the micro structure 

rotation gradient, an additional length scale 

parameter is considered while in the strain gradient 

theory, there exist three additional length scale 

parameters corresponding to the micro structure 

rotation gradient, the micro structure dilatation 

gradient and the micro structure stretch gradient. 

Due to the lack of internal material length scale 

parameters, conventional strain-based mechanics 

theories fail to characterize those size effects 

phenomenon when the structural size is in micron- 

and sub-micron-scale. However, these size 

dependences can be successfully modeled by 

employing higher-order continuum theory, in which 

constitutive equations introduce additional material 

length scale parameters in addition to classical 

material parameters. 

 As a higher-order continuum theory, the 

classical couple stress elasticity theory was 

originated by Mindlin and others including Toupin 

and Koiter in 1960s and contains four material 

constants (two classical and two additional) for 

isotropic elastic materials [14-17]. Some related 

research works had been performed to model the 

static and dynamic problems based on the classical 

couple stress theory [18,19]. In 1994, Fleck and 

Hutchinson extended and reformulated the classical 

couple stress theory and renamed it as the strain 

gradient theory, in which for homogeneous 

isotropic and incompressible materials, two 

additional higher-order material length scale 

parameters are introduced for couple stress theory 

and three additional higher-order material length 

scale parameters are introduced for stretch and 

rotation gradient theory [20-23]. Recently, a 

modified couple stress theory for elasticity had 

been elaborated by Yang et al. in 2002, in which 

constitutive equations involve only one additional 

internal material length scale parameter besides two 

classical material constants [24]. This theory had 

been applied to the analysis of many boundary 

value problems successfully [24, 26]. In 2003, Lam 

et al. proposed a modified strain gradient elasticity 

theory in which a new additional equilibrium 

equations to govern the behavior of higher-order 

stresses, the equilibrium of moments of couples is 

introduced, in addition to the classical equilibrium 

equations of forces and moments of forces [27]. 

Moreover, there are only three independent higher-

order materials length scale parameters for isotropic 

linear elastic materials in the present theory. Then 

an elastic bending theory for thin plane-strain 

beams was developed. Static bending solutions for 

cantilever beams were derived based on the new 

higher-order bending theory and the constitutive 

equations were expressed as the moment and 

higher-order moment in terms of the curvature and 

the curvature gradients [27]. In a similar way 

utilized by Yang et al. [24] for the modification of 

the couple stress theory, Lam et al. [27] introduced 

a modified strain gradient theory, which reduces in 

a special case to the modified couple stress theory. 

Henceforth, when the strain gradient theory is used 

in this text, it refers to the version of the theory 

presented by Lam et al. [27]. In the strain gradient 

theory, there exist three length scale parameters 

corresponding to the micro structure rotation 

gradient, the micro structure dilatation gradient and 

the micro structure stretch gradient. 

 In studies associated with the strain 

gradient theory, for numerical evaluations, the 
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researchers usually consider these three length scale 

parameters to be the same and indeed equal to the 

length scale parameter used in the modified couple 

stress theory [28, 29]. In order to determine the 

length scale parameter for a specific material, some 

typical experiments such as micro-bend test, micro-

torsion test and specially micro/nano indentation 

test can be carried out. As an example, according to 

the micro-torsion test of thin copper wire [30], the 

copper length scale parameter has been reported 4 

µm. Also, based on the micro-bend test of thin 

nickel and epoxy beams, the length scale parameter 

for nickel and epoxy has been estimated 5 µm [31] 

and 17.6 µm [27], respectively. 

 Recently, torsional vibration of nanorods is 

presented with nonlocal elasticity by Narendar [32]. 

In that work it was found that the strong effect of 

the nonlocal scale leads to substantially different 

behaviors of nanorods from those of macroscopic 

rods. Nonlocal rod model was developed for 

torsional vibration of nanorods. It was found that 

the torsional vibration frequencies were highly over 

estimated by the classical rod model because of 

ignoring the effect of small length scale. Aydogdu 

[33] investigated free axial vibration of uniform 

nanorods using nonlocal continuum theory of 

Eringen. The results showed that the nonlocal rod 

model overestimates the natural frequencies of the 

nanorod with respect to the classical one. Narendar 

and Gopalakrishnan [34] also studied longitudinal 

vibration of nanorods using a nonlocal bar model. 

The obtained results indicated that small scale 

parameter of the nonlocal model causes a certain 

band gap region in the longitudinal wave mode 

such that no wave propagation would occur. This 

issue was shown in the illustrated spectrum curves, 

as the regions, where the wave number tends to an 

infinite value. Narendar and Gopalakrishnan [35], 

studied the ultrasonic wave dispersion 

characteristics of a nanorods based on nonlocal 

strain gradient models (both second and fourth 

order). They derived the explicit expressions for 

wave numbers and the wave speeds of the nanorod. 

Their analysis showed that the fourth order strain 

gradient model gives approximate results over the 

second order strain gradient model for dynamic 

analysis. The second order strain gradient model 

gives a critical wave number at certain wave 

frequency, where the wave speeds are zero. They 

explained the dynamic response behavior of 

nanorods based on both the strain gradient models.  

More recently, Narendar [36], studied the terahertz 

wave dispersion characteristics of nanorods based 

on the nonlocal elasticity incorporating the lateral 

inertia under the umbrella of continuum mechanics 

theory. He has shown that, the unstable second 

order strain gradient model can be replaced by 

considering the inertia gradient terms in the 

formulations. The effects of both the nonlocal scale 

and the diameter of the nanorod on spectrum curves 

are highlighted in that work [36]. There are some 

works by the authors related to the field of 

MEMS/NEMS [37-45]. 

 In this paper, torsional vibration of micro 

rods is formulated based on the strain gradient 

theory. The Hamilton principle is utilized to obtain 

the governing equation and both classical and non-

classical boundary conditions. Afterward, a closed-

form analytical solution is derived for torsional 

vibration of micro rods. As a case study, the free-

vibration torsional behavior of a fixed-fixed micro 

rod modeled by the strain gradient theory is 

presented and the results of the current model are 

compared to those of the modified couple stress 

theory and classical theory. 

 

 

A REVIEW OF STRAIN GRADIENT 

THEORY OF ELASTICITY 
 

 A modified strain gradient elasticity 

theory was proposed by Lam et al. [27], in which a 

new additional equilibrium equations to govern the 

behavior of higher-order stresses, the equilibrium of 

moments of couples is introduced, in additional to 

the classical equilibrium equations of forces and 

moments of forces [27, 46]. In the constitutive 

equations of this theory, there are only three 

independent higher-order materials length scale 

parameters in addition to two classical material 

parameters for isotropic linear elastic materials. 

Then the strain energy  se  in a deformed isotropic 

linear elastic material occupying region is given 

by 

 

 (1) (1)1
= =

2
     

 
      

S S

se ij ij i i ijk ijk ij iju d p m d   (1) 

 

 Where the deformation measures are 

defined as follows, 
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 
1

=
2

   ij i j j iu u                                            (2) 

 

, = =  mm i i i mm                                            (3) 

 

   

   

(1) 1 1
= 2

3 15

1
2 2

15

      

     

        

        
 

ijk i jk j ki k ij ij k mm m mk

jk i mm m mi ki j mm m mj

       (4) 

 

 
1

=
2

    s

ij i j j i
                                                    (5) 

 
1

= curl( )
2

i u                                                    (6) 

 

 Where ui , γi  συτ and θi denote the 

components of the displacement vector u, the 

dilatation gradient vector γ, and the infinitesimal 

rotation vector υ. Also, the components of the 

strain tensor  ε, the deviatoric stretch gradient 

tensor η
(1)

, and the symmetric part of the rotation 

gradient tensor χ
S
 are represented by εij , η

(1)
ijk and 

χ
S

ij . The parameters which are obtained by 

differentiating the strain energy density with 

respect to kinematics parameters ε, γ, η
(1)

 and χ
S
 

are, respectively, symbolized by σ, p, τ
(1)

 and m
S
. 

The parameters p, τ
(1)

  and m
S
 are usually called the 

higher-order stresses. According to the constitutive 

equations for a linear isotropic elastic material, the 

components of the stresses are related to the 

kinematic parameters effective on u  as follows: 

 

= 2 '   ij ij mm ij               (7) 

 
 

2

0= 2 i ip l                              (8) 

 
(1) 2 (1)

1= 2  ijk ijkl                           (9) 

 
2

2= 2 S S

ij ijm l                            (10) 

 

where ' ij  is deviatoric strain defined as 

 

1
' =

3
   ij ij ij mm

                    (11) 

In the above equations, λ, μ are the 

Lame constants appearing in the constitutive 

equation of the classical stress σ. Also, the 

additional independent material length scale 

parameters appeared in the constitutive equations 

of higher order stresses are represented by l1 , l2 

and l3, respectively associated with dilatation 

gradients, deviatoric stretch gradients and rotation 

gradients. The Lame constants can be written in 

terms of the Young modulus E and the Poisson 

ratio ν as 

 

= , = .
(1 )(1 2 ) 2(1 )


 

    

E E          (12) 

 

 

DYNAMIC ANALYSIS OF MICRO RODS 

BASED ON STRAIN GRADIENT 

THEORY OF ELASTICITY 
 

Governing equation and boundary conditions for 

torsional vibration 
 In this section, the governing equation 

and both classical and non-classical boundary 

conditions of torsional vibration of a micro bar 

based on strain gradient theory are derived. 

 Consider a straight micro rod with lengtH 

Lmr with coordinate system as shown in Figure 1a 

and its cross-section with radius is shown in Figure 

1b. For torsion of the micro rod depicted in Figure 

1c, the components of the displacement vector u are 

expressed as [47]. 

 

1( , ) = ( , )u z t y z t                 (13) 

 

2 ( , ) = ( , )u z t x z t                   (14) 

 

3( , ) = 0u z t                             (15) 

 

 where 1u , 2u  and 3u  denote the 

displacement along x , y  and z  axes, respectively; 

where z  represents the coordinate along the micro 

rod length. Also,   stands for rotation angle of the 

micro rod about z axis and u=u1i+u2j+u3k. 

By substitution of Eqs. (13)-(15) into Eq. (2), the 

components of the strain tensor   are obtained as 

 

11 12 21 22 33= = = = = 0                  (16) 
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13 31

1
= =

2


 





y

z
                       (17) 

 

23 32

1
= =

2


 




x

z
                          (18) 

 

 Substituting Eqs.(16)-(18) into Eqs.(3) 

and (4), the components of the dilatation gradient 

vector γ  and the nonzero components of the 

deviatoric stretch gradient tensor 
(1)

η  are 

respectively determined as 

 

1 2 3= = = 0                               (19) 

 

 
2

(1)

111 2

1
=

5







y

z
 

2
(1) (1) (1)

112 121 211 2

1
= = =

15


  





x

z
 

2
(1) (1) (1)

212 221 122 2

1
= = =

15


  




y

z
 

2
(1)

222 2

1
=

5








x

z
 

2
(1) (1) (1)

313 133 331 2

4
= = =

15


  





y

z  
2

(1) (1) (1)

323 233 332 2

4
= = =

15


  




x

z
                    (20) 

 

 The components of the rotation vector υ  

are derived by substitution of Eqs. (13)-(15) into 

Eq. (6), as follows: 
 

1 2 3

1 1
= ( , ), = ( , ), = ( , )

2 2
      x z t y z t z t    (21) 

 

 Having the components of the rotation 

vector υ  in hand, one can obtain the non-zero 

components of the symmetric part of the rotation 

gradient tensor 
S

χ  introduced in Eq. (5) as 

 

11 22

1
= =

2


 






S S

z
 

33 =







S

z
 

2

13 31 2

1
= =

4


 






S S x
z

 

2

23 32 2

1
= =

4


 






S S y
z

                         (22) 

 

 Similarly, employing the components ε , 
(1)

η  and 
S

χ  obtained before and considering Eqs. 

(7), (9), and (10), the non-zero components of the 

stress tensor σ  and higher-order stress tensors, 
(1)

τ  

and 
S

m  are determined as 

 

13 31= =


  





y
z

 

23 32= =


  



x

z
                                   (23) 

 
2

(1) 2

111 1 2

2
=

5


 




l y

z  
2

(1) (1) (1) 2

112 121 211 1 2

2
= = =

15


   





l x

z
 

2
(1) (1) (1) 2

212 221 122 1 2

2
= = =

15


   




l y

z
 

2
(1) 2

222 1 2

2
=

5


 





l x

z
 

2
(1) (1) (1) 2

313 133 331 1 2

8
= = =

15


   





l y

z
 

2
(1) (1) (1) 2

323 233 332 1 2

2
= = =

15


   




l x

z
                 (24) 

 

2

11 22 2= =








S Sm m l
z

 

2

33 2= 2







Sm l
z

 

2
2

13 31 2 2

1
= =

2









S Sm m l x
z

 

2
2

23 32 2 2

1
= =

2









S Sm m l y
z

                          (25) 
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 It is noted that according to Eq. (8), since 

all components of the dilatation gradient vector are 

zero, i.e. = 0 i , all components of the higher-

order stress vector P  will be zero too. By 

substituting Eqs. (16)-(20), (22)-(25) into Eq.(1), 

the total potential energy of the micro rod  se  is 

obtained as follows: 

 

   

   

(1) (1) (1) (1)

0

22 2
2 2 2 2 2 2 2

2 1 2 20

1 1
= =

2 2

1 8 1
( ) 3 ( )

2 15 4

           

 


      

      
           

       

  

  

L
mrS S S S

se ij ij i i ijk ijk ij ij ij ij i i ijk ijk ij ij
V A

L
mr

A A

p m dV p m dAdz

x y dA Al x y dA l l dz
z z

      (26) 

 

 where V , A  and mrL , respectively denote the volume, cross-section area and length of the micro 

rod. Furthermore, 
2 2( )A

x y dA  is the polar area moment of inertia and later it will be denoted as J . 

The total kinetic energy of the micro rod  ke  is obtained as 

 
2 22 2 2 2

3 31 2 1 2

0

2

0

1 1
= =

2 2

1

2

 




                 
                 

                     

 
  

 

  



L
mr

ke
V A

L
mr

u uu u u u
dV dAdz

t t t t t t

J dz
t

       (27) 

 

here   is the density of the micro rod. 

 The variation of the work done by external classical and higher-order torques, wd , can be 

introduced as 

 
=

=

=00
=0

= ( , )


   


  


z L
mrl z Lmr mrC H

wd z
z

T z t dz
z

T T                                                                (28) 

 

 where ( , )T z t  represents the distributed torque per unit length about z -axis and 
CT  and 

HT  

denote respectively, the classical and higher order torques acting on the end sections of the micro rod. 

 The governing torsional vibration equation and boundary conditions of micro rods based on strain 

gradient theory are obtained by utilizing the Hamilton principle. The Hamilton principle yields 

 

 2

1

= 0      
t

ke se wd
t

dt                                                                                                              (29) 

 

 This implies 

 

 
2 2

2 2 2 2

2 1 2 2 20
1

=
=2

=0
1 =0

8 1
3 ( , )

15 4

= 0

     
      


 

       
      

       

 
  

  

 



t L
mr

t

z L
mrt z L

mrC H

zt
z

J J Al J l l T z t dzdt
t t z z z z

dt
z

T T

   (30) 

 Using integration by parts, this equation becomes 
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 Based on the Lagrangian equations, the 

governing torsional vibration equation, boundary 

and initial conditions of micro rods based on strain 

gradient theory are obtained as: 

 

Governing Equation 
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Initial Conditions 

δθ: 
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=
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= 0
t t

t t
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 Here Eq. (32) represents the governing 

equation of torsion of micro rods based on strain 

gradient theory of elasticity while Eqs. (33)-(36) 

refer to corresponding classical and non-classical 

boundary conditions, respectively and Eqs. (37) 

and (38) refer to the initial conditions. 

 Now by substituting 1 = 0l  and 2 =l l  in 

Eqs. (32)-(38), reduce to the governing equation 

and boundary an initial conditions of torsional 

vibration of a micro rod modeled on the basis of the 

modified couple stress theory (MCST) presented in 

ref. [48]. It is noted that the modified couple stress 

theory is a special case of the strain gradient theory 

in a way that by letting 0 1= = 0l l  and 2 =l l  in 

strain gradient theory, the formulation of the 

modified couple stress theory can be achieved. 

Furthermore, letting 1 2= = 0l l , Eqs. (32)-(38) 

reduce to governing equation, boundary and initial 

conditions of torsion of a classical rod presented in 

ref. [49]. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 1. (a) Schematic of the micro rod showing cooerinate system, length and the applied torque, (b) cross section of the micro rod 

showing the radius and the coodrinate system and (c) the fixed-fixed micro bar under torsional vibration. 
 

 

Solution of the governing equation: Free 

torsional vibration analysis 

 For constant values for 1, , , , J A l  

and 2l , considering ( , ) = 0T z t  the governing 

equation of torsion of micro rods based on strain 

gradient theory of elasticity can be written as: 

 

 
2 4 2

2 2 2

2 1 22 4 2

8 1
3 = 0

15 4

  
  
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   
J Al J l l J

z z t

      (39) 

 

 For free-vibration behavior of a micro 

rod, one can assume a harmonic response for Eq. 

(39) as 

( , ) = ( )   j tz t z e                                   (40) 

 

 here   denote the torsional natural 

frequency of the micro rod and = 1j . By 

substituting Eq. (40) into Eq. (39), the following is 

obtained 

 

 
2 4

2 2 2 2

2 1 22 4

( ) 8 1 ( )
3 ( ) = 0

15 4
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 

d z d z
J Al J l l J z

dz dz

  (41) 
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 In order to describe the size-dependent 

free torsional vibration of micro rods, a numerical 

example is presented here. Consider a fixed-fixed 

micro rod with length mrL  having circular cross-

section and neglect the loading. For the 

aforementioned micro rod, the boundary conditions 

of Eq. (41) can be presented as 

 
2 2

2 2=0 =

=0 =

= 0, = 0, = 0, = 0
 

 
z z L

mr
z z L

mr

d d

dz dz

           (42) 

 

 Assuming the solution of the Eq. (41) as 

( ) =   j zz e , here   is an unknown coefficient 

and = /  mrn L . Substituting it in Eq. (41) and 

solving for the torsional natural frequency of the 

micro rod as 

 

 2 2 2 2

2 1 2

8 1
= 3

15 4


  



 
   

 
J Al J l l

J
       (43) 

 

 By choosing 1 = 0l  and 2 =l l  in the 

above equation, the torsional natural frequency of a 

fixed–fixed micro rod modeled on the basis of the 

modified couple stress theory can be obtained. 

Furthermore, the natural torsional frequency of a 

classical fixed–fixed rod can be derived from Eq. 

(43) by letting 1 2= = 0l l . 

 

 

RESULTS AND DISCUSSION 

 

 To illustrate the newly derived solution 

of the fixed-fixed micro rod based on strain 

gradient theory, some numerical results have been 

obtained and presented in this section, where the 

first five natural frequencies of a fixed-fixed micro 

rod given by the current strain gradient elasticity 

theory solution, modified couple stress theory 

solution and classical theory solution are shown. 

For the purpose of illustration, the rod considered 

here is taken to be made of epoxy and material 

properties used in the calculations are taken to be 

=1.44E GPa , = 0.38 , and material density 

3= 1000 / kg m . The length scale parameter for 

epoxy has been taken from ref. [27] as 17.6 m . 

 From the curves in Figures 2a-2e, it can 

be seen that the first torsional natural frequencies 

predicted by the present strain gradient elastic rod 

theory are higher than that predicted by the 

classical beam theory and the modified couple 

stress theory. The torsional natural frequencies 

predicted by the modified couple stress theory are 

about 1.5 times lower than that predicted by the 

present strain gradient theory when the length of 

the micro rod is equal to 5 µm. It is also shown that 

the difference among the three sets of predicted 

values is diminishing when the radius of the rod 

becomes larger, thereby indicating that the size 

effect is only significant when the radius of the rod 

is comparable to the material length scale 

parameter. Compared to natural frequencies from 

modified couple stress theory, the natural 

frequencies from this strain gradient elasticity 

theory are larger and the size effects are reasonable 

that the strain gradient elasticity theory introduces 

additional dilatation gradient tensor and the 

deviatoric stretch gradient tensor in addition to the 

rotation gradient tensor. 

The effect of length of the micro rod on the first 

torisonal natural frequencies can be seen from 

Figures 2a-2e. As the length of the micro rod 

increases from 5 µm to 100 µm, the difference 

between the present strain gradient elasticity and 

the modified couple stress theory becomes 

negligible even for higher radii of the micro rods. It 

can also be observed that the classical elasticity 

will not capture any size effects. 

 As we move from first torsional natural 

frequencies of micro rods to fifth torsional natural 

frequencies, it can be observed that the difference 

between the present strain gradient elasticity and 

the modified couple stress theory becomes 

significant and cannot be neglected for higher radii 

of the micro rods (see Figures 2a-2e, 3a-3e, 4a-4e, 

5a-5e and 6a-6e). 

It also confirms that the micro rods modelled by the 

strain gradient theory are stiffer than those 

modelled by the modified couple stress theory; 

noted that the modified couple stress theory 

predicts rods stiffer than the classical theory does. 

In addition, from Figures 2-6, it can be inferred that 

the difference between the results predicted by the 

strain gradient theory and those evaluated by the 

modified couple stress theory is greater for higher 

natural frequencies (higher modes) than for lower 

ones. 
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Fig. 2. Variation of first torsional natural frequencies of micro rod with radius for various lengths (a) L = 5 µm, (b) L = 10 µm, 
(c) L = 25 µm, (d) L = 50 µm, (e) L = 100 µm. 
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Fig. 3. Variation of second torsional natural frequencies of micro rod with radius for various lengths (a) L = 5 µm, (b) L = 10 µm, 
(c) L = 25 µm, (d) L = 50 µm, (e) L = 100 µm. 
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Fig. 4. Variation of third torsional natural frequencies of micro rod with radius for various lengths (a) L = 5 µm, (b) L = 10 µm, 

(c) L = 25 µm, (d) L = 50 µm, (e) L = 100 µm. 
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Fig. 5. Variation of fourth torsional natural frequencies of micro rod with radius for various lengths (a) L = 5 µm, (b) L = 10 µm, 

(c) L = 25 µm, (d) L = 50 µm, (e) L = 100 µm. 
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Fig. 6. Variation of fifth torsional natural frequencies of micro rod with radius for various lengths (a) L = 5 µm, (b) L = 10 µm, 

(c) L = 25 µm, (d) L = 50 µm, (e) L = 100 µm. 
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CONCLUSION 
 

The torsional free-vibration behavior of a 

fixed-fixed micro rod based on strain gradient 

elasticity theory is investigated and the results are 

compared to those evaluated by the classical and 

the modified couple stress theories noted that the 

two latter theories are special cases of the strain 

gradient theory. In free-torsional-vibration case, the 

difference between the results of the strain gradient 

theory and those of the modified couple stress 

theory is greater for higher vibration-modes of 

micro rods than for lower ones. It has also been 

observed that the difference between the present 

strain gradient elasticity and the modified couple 

stress theory becomes negligible even for higher 

radii of the micro rods for lower lengths. The 

present results can be useful in the design and 

analysis of next generation micro-electro-

mechanical-systems and nano-electro-mechanical-

systems which uses the torsional vibration 

properties of the micro-/nano-rods. 
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