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ABSTRACT 

 
   This paper presents the thermal vibration analysis of double-

layer graphene sheet embedded in polymer elastic medium, using the 

plate theory and nonlocal continuum mechanics for small scale effects. 

The graphene is modeled based on continuum plate theory and the axial 

stress caused by the thermal effects is also considered. Nonlocal 

governing equations of motion for this double-layer graphene sheet 

system are derived from the principle of virtual displacements. The 

closed form solution for thermal-vibration frequencies of a simply 

supported rectangular nanoplate has been obtained by using the Navier’s 

method of solution. Numerical results obtained by the present theory are 

compared with available solutions in the literature and the molecular 

dynamics results. The influences of the small scale coefficient, the room 

or low temperature, the high temperature, the half wave number and the 

aspect ratio of nanoplate on the natural frequencies are considered and 

discussed in detail. The thermal vibration analysis of single- and double-

layer graphene sheets are considered for the analysis. The mode shapes of 

the respective graphene system are also captured in this work. The 

present analysis results can be used for the design of the next generation 

of nanodevices that make use of the thermal vibration properties of the 

double-layer graphene system.. 

 

Keywords: Graphene; Thermal vibration; Nonlocal Elasticity Theory; 

Small scale; Mode shape. 

 

 

INTRODUCTION 
 

 The unique properties of the graphene sheets (GSs) make 

them very attractive in many scientific research aspects. Some 

remarkable mechanical properties of GSs reveal that they have 

potential for creating novel ultra-strength composite materials [1-3]. 

GSs are mostly  used  in  polymer  composites  as  embedded  

structures to  fortify  them  [4-6].  
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 Furthermore, the potential applications of 

the single-layered GSs as mass sensors and 

atomistic dust detectors have been investigated [7]. 

Graphite possesses many superior properties [8], 

such as good electrical and thermal conductivities 

parallel to the sheets and poor conductivities 

normal to the sheets, which makes it suitable for 

gasket material in high temperature or chemical 

environments; good flexibility, which suggests its 

use as a vibration damping material; and a high 

strength-to-weight ratio, which makes it an ideal 

material for sports equipment. Dubay and Kresse 

[9] calculated a set of force constants using ab initio 

density-functional theory, and then calculated the 

phonon dispersion relation of graphite using these 

force constants. Their numerical results are in 

reasonable agreement with the experimental results. 

Xu and Liao [10] studied the elastic response of a 

circular single-layered graphene sheets (GSs) under 

a transverse central load using molecular dynamics, 

the closed form elasticity solution, and the finite 

element method. Their simulation gave consistent 

predictions for the elastic deformation of a GS 

using molecular dynamics and conventional 

continuum mechanics. Graphite is composed of 

multiple layers of GSs that are attracted to each 

other through the vdW force. It has been reported 

[11] that single-layered GSs can be detected in 

carbon nanofilm, but so far single-layered GSs have 

not been separable from graphite. 

 Recently, Behfar and Naghdabadi [12] 

investigated the nanoscale vibration of a multi-

layered graphene sheet (MLGS) embedded in an 

elastic medium, in which the natural frequencies as 

well as the associated modes were determined using 

a continuum-based model. The influence of carbon–

carbon and carbon–polymer vdW forces are 

considered in their work. They [13] further studied 

the bending modulus of a MLGS using a 

geometrically based analytical approach. The 

bending energy in their analysis is based on the 

vdW interactions of atoms belonging to two 

neighboring sheets. Their calculations are 

performed for a double-layered GS, but the derived 

bending modulus is generalized to a MLGS 

composed of many double-layered GSs along its 

thickness, in which the double-layered GSs are 

alternately the same in configuration. In addition, it 

should be mentioned that graphite is composed of 

multi-layered sheets, but it was recently reported 

[11] that single-layered sheet are detectable in 

carbon nanofilms. 

 Conducting  controlled  experiments  at  the  

nanoscale  is  a  formidable  task  while  being  

prohibitively expensive.  Therefore, theoretical  

analyses  of  nanostructures  are  still  being  

considered  as  the  dominant tools  for  modeling  

such  structures.  The  molecular  dynamics  (MD)  

simulations  as  perhaps  the  most powerful  and  

reliable  approaches  are  increasingly  providing  

valuable  insight  into  various  aspects  of 

nanomaterials and their properties. However, these 

atomistic simulations are limited to very small 

length and time scales due to being computationally 

expensive. Thus, the notions of continuum 

mechanics have attracted  a  great  deal  of  

attention  of  many  researchers  to  treat  structures  

at  the  scale  of  nanometer. Successful  

applications  of  the  classical  continuum  modeling  

to  nanostructured  materials  have  been reported 

by researchers [12-14]. However, the classical 

continuum mechanics is scale independent which 

makes its applicability to the small-scale 

nanomaterials somewhat questionable. The size 

effects are recognized to become more pronounced 

as the dimensions of nanostructures become very 

small.  Hence,  the  extension  of  continuum  

mechanics  to  accommodate  the  size  dependence  

of nanomaterials becomes another topic of major 

concern. Some researchers have proposed the 

nanoscale continuum theories incorporating 

interatomic potentials into the continuum model 

[15, 16]. Application of nonlocal continuum 

mechanics allowing for the small scale effects to 

analysis of nanomaterials has been also suggested 

by some other research workers in the study of 

nanostructures [17-31]. Herein, some of the most 

relevant published papers on the nonlocal version 

of continuum models are cited. 

 The small scale of nanostructures makes 

the applicability of classical or local continuum 

models, such as beam, shell and plate models, 

questionable. Classical continuum models do not 

admit intrinsic size dependence in the elastic 

solutions of inclusions and inhomogeneities. At 

nanometer scales, however, size effects often 

become prominent, the cause of which needs to be 

explicitly addressed due to an increasing interest in 

the general area of nanotechnology [32]. Sun et al. 

[33] indicated the importance of a semi-continuum 

model in analyzing nanomaterials after pointing out 
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the limitations of the applicability of classical 

continuum models to nanotechnology. In their 

semi-continuum model for nanostructured materials 

with plate like geometry, material properties were 

found completely dependent on the thickness of the 

plate structure contrary to classical continuum 

models. The modeling of such a size-dependent 

phenomenon has become an interesting research 

subject in this field. It is thus concluded that the 

applicability of classical continuum models at very 

small scales is questionable, since the material 

microstructure, such as lattice spacing between 

individual atoms, becomes increasingly important 

at small size and the discrete structure of the 

material can no longer be homogeneities into a 

continuum. Therefore, continuum models need to 

be extended to consider the scale effect in 

nanomaterial studies. This can be accomplished 

through proposing nonlocal continuum mechanics 

models. 

 Nonlocal elasticity theory [34-36] was 

proposed to account for the scale effect in elasticity 

by assuming the stress at a reference point to be a 

function of strain field at every point in the body. 

This way, the internal size scale could be simply 

considered in constitutive equations as a material 

parameter only recently has the nonlocal elasticity 

theory been introduced to nanomaterial 

applications. As the length scales are reduced, the 

influences of long-range interatomic and 

intermolecular cohesive forces on the static and 

dynamic properties tend to be significant and 

cannot be neglected. The classical theory of 

elasticity being the long wave limit of the atomic 

theory excludes these effects. Thus the traditional 

classical continuum mechanics would fail to 

capture the small scale effects when dealing in nano 

structures. The small size analysis using local 

theory over predicts the results. Thus the 

consideration of small effects is necessary for 

correct prediction of micro/nano structures. Chen et 

al. [37] proved that the nonlocal continuum theory 

based models are physically reasonable from the 

atomistic viewpoint of lattice dynamics and 

molecular dynamics simulations. However, the 

most reportedly used continuum theory for 

analyzing small scale structures is the nonlocal 

elasticity theory initiated by Eringen [35, 36]. 

Using this nonlocal elasticity theory, some 

drawbacks of the classical continuum theory can be 

efficiently avoided and size-dependent phenomena 

can be satisfactorily explained. In nonlocal 

elasticity theory the small scale effects are captured 

by assuming the stress components at a point is 

dependent not only on the strain components at the 

same point but also on all other points in the 

domain. 

 The recent work by Pradhan and Phadikar 

[18] on the vibration analysis of double-layered 

GSs embedded in a polymer matrix was also based 

upon the nonlocal continuum mechanics. Pradhan 

and Phadikar [19] extended their previous research 

work on the basis of the  classic plate  theory  to  

the  first  order  shear  deformation  theory. 

 For the accurate mechanical analysis of 

discrete nanostructures, experiments and molecular 

dynamic simulations are more appropriate. 

However as controlled experiments in nanoscale 

are difficult and molecular dynamic simulations are 

computationally expensive, theoretical modelings 

of nanostructures become an important issue 

concerning approximate analysis of nanostructures. 

Continuum modeling of nanostructures has thus 

received increased deal of attentions. However 

classical continuum elasticity, which is a scale-free 

theory, cannot predict the size effects. In nonlocal 

elasticity theory the small scale effects are captured 

by assuming the stress components at a point is 

dependent not only on the strain components at the 

same point but also on all other points in the 

domain. In the literature a great deal of attention 

has been focused on studying the thermal vibration 

behavior of one-dimensional nanostructures using 

nonlocal elasticity theory. These nanostructures 

include nanobeams, nanorods and carbon 

nanotubes. On the contrary no work appears related 

to the thermal-vibration of double layer nanoplates. 

So, the present work is motivated to analyze the 

thermal vibration features of the double-layer 

graphene sheets (DLGSs) embedded in polymer 

medium based on size dependent nonlocal elasticity 

theory. 

 The main objective of the work reported 

here was to establish a simple and suitable 

continuum-based model to investigate the vibration 

behavior of a DLGS that is embedded in an elastic 

matrix. A set of explicit formulas is derived for the 

natural frequencies and the associated modes in the 

special cases of single- and double-layered GSs. 

These formulae clearly indicate the influence of the 

van der Waals (vdW) interaction and the 

surrounding matrix on the vibration behavior. The 
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effects of the vdW interaction and of the 

surrounding matrix on the resonant frequency and 

the associated mode shape are examined in 

graphical form. 

 

 

EXPERIMENTAL 
 

Theory of Nonlocal Elasticity 

 This theory assumes that the stress state at 

a reference point X in the body is regarded to be 

dependent not only on the strain state at X but also 

on the strain states at all other points X’ of the 

body. The most general form of the constitutive 

relation in the nonlocal elasticity type 

representation involves an integral over the entire 

region of interest. The integral contains a nonlocal 

kernel function, which describes the relative 

influences of the strains at various locations on the 

stress at a given location. The constitutive 

equations of linear, homogeneous, isotropic, non-

local elastic solid with zero body forces are given 

by [36]. 

 
                                                        (1) 

 

 
         

 
              

                   (2) 

 

 
   

                                                        (3) 

 

 

        
 

 
 
     

  

   
  

     
  

   
                            (4) 

 

 

 Equation (1) is the equilibrium equation, 

where      ,  ,    and    are the stress tensor, mass 

density, body force density and displacement vector 

at a reference point   in the body, respectively, at 

time  . Equation (3) is the classical constitutive 

relation where    
      is the classical stress tensor 

at any point    in the body, which is related to the 

linear strain tensor         at the same point. 

Equation (4) is the classical strain-displacement 

relationship. The only difference between equations 

(1)-(4) and the corresponding equations of classical 

elasticity is the introduction of equation (2), which 

relates the global (or nonlocal) stress tensor       to 

the classical stress tensor    
      using the modulus 

of nonlocalness. The modulus of nonlocalness or 

the nonlocal modulus             is the kernel of 

the integral equation (2) and contains parameters 

which correspond to the nonlocalness [36]. A 

dimensional analysis of equation (2) clearly shows 

that the nonlocal modulus has dimensions of 

           and so it depends on a characteristic 

length ratio     where   is an internal 

characteristic length (lattice parameter, size of 

grain, granular distance, etc.) and   is an external 

characteristic length of the system (wavelength, 

crack length, size or dimensions of sample, etc.). 

Therefore the nonlocal modulus can be written in 

the following form: 

 

                    
   

 
                                 (5) 

 

 where    is a constant appropriate to the 

material and has to be determined for each material 

independently [36]. 

 Making certain assumptions [36], the 

integro-partial differential equations of nonlocal 

elasticity can be simplified to partial differential 

equations. For example, equation (2) takes the 

following simple form: 

 
                    

                        (6) 

 

 where       is the elastic modulus tensor of 

classical isotropic elasticity and     is the strain 

tensor,     denotes the second order spatial gradient 

applied on the stress tensor     and        . 

 A method of identifying the small scaling 

parameter    in the nonlocal theory is not known 

yet. As defined by Eringen [36],    is a constant 

appropriate to each material. Eringen proposed 

   
     

  
      by the matching of the 

dispersion curves via nonlocal theory for plane 

wave and Born-Karman model of lattice dynamics 

at the end of the Brillouin zone       , where   

is the distance between atoms and   is the 

wavenumber in the phonon analysis [36]. 

According to Sudak [38], values of    need to be 

determined from experimental results, and in the 

results of Sudak [38], it was concluded that     (  

is the length of CNT) and    should be the same 

order or one order less to have any significant 

nonlocal effect. Zhang et al. [39] approximated that 
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        by matching the theoretical buckling 

strain obtained by the nonlocal elastic cylindrical 

shell model using Donell theory to those from 

molecular mechanics simulations given by Sears 

and Batra [40]. By using the strain gradient 

approach, the parameter    was proposed that 

         by Wang and Hu [41]. The above-

mentioned studies clearly indicate that reasonable 

choice of the value of the parameter    a is crucial 

to ensure the validity of the nonlocal models, and 

therefore more works are required to determine the 

value of    a more accurately for nanostructures. A 

conservative estimate of the nonlocal parameter 

              for a single walled carbon 

nanotube is proposed by Wang [42]. 

 Recently, Narendar et al. [43] presented an 

expression for the non-local scaling parameter as a 

function of the geometric and electronic properties 

of single-walled CNTs. A self-consistent method 

was developed for the linearization of the problem 

of ultrasonic wave propagation in CNTs. They 

proved that (a) the general three-dimensional elastic 

problem leads to a single non-local scaling 

parameter (e0), (b) e0 is almost constant irrespective 

of chirality of CNT in the case of longitudinal wave 

propagation, (c) e0 is a linear function of diameter 

of CNT for the case of torsional mode of wave 

propagation, and (d) e0 in the case of coupled 

longitudinal-torsional modes of wave propagation, 

is a function which exponentially converges to that 

of axial mode at large diameters and to torsional 

mode at smaller diameters. Narendar and 

Gopalakrishnan [44] also recommended the value 

of the scale coefficient to be about 0.11 nm for the 

application of the nonlocal theory in the analysis of 

axial compression of carbon nanotubes.  

 Therefore, in this study, the nonlocal 

parameter is taken as                     to 

investigate nonlocal effects on the terahertz wave 

characteristics of a monolayer graphene. 

 

Nonlocal Governing Partial Differential 

Equations for Monolayer Graphene Sheet 

 Figure 1(a) shows a rectangular graphene 

sheet and its equivalent continuum model. Liew et 

al. [45] considered graphene as isotropic material in 

their continuum model. In the present work such 

continuum plate model has been assumed. The 

coordinate system used for the graphene sheet is 

shown in Figure 1. Origin is chosen at one corner of 

the plate. The   coordinate of the axis is taken 

along the length of the plate,   coordinate is taken 

along the width of the plate and   coordinate is 

taken along the thickness of the plate. The 

displacement field according to classical plate 

theory (CLPT) can be written as [46] 

 

                      
         

  
 

 

                      
         

  
 

 
                                                         (7a,b,c) 
 

 

 Here  ,   and   denote displacement along 

 ,   and   directions, respectively (see Figure 1). 

The strains can be calculated as 

 

    
   

  
 

  

  
  

   

   
 

 

    
   

  
 

  

  
  

   

   
 

 

    
   

  
 

   

  
 

  

  
 

  

  
   

   

    
 

 
                                                   (8-a,b,c,d) 

 

 

 It can be noted that nonlocal behavior 

enters through the constitutive relations. Principle 

of virtual work is independent of constitutive 

relations. So this can be applied to derive the 

equilibrium equations of the nonlocal plates. 

 Using the principle of virtual work, 

following equilibrium equation in w can be 

obtained [28] 

 
     

   
  

     

    
 

     

   
 

    

   
  

   

   
 

   

       
   

   
   

 

  
   

   
    

   

      
 

   

      
              

 

(9) 

 

 where    and    are mass moments of 

inertia and are defined as follows 
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 Here   denotes the thickness of the plate 

and the moment resultants 
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 Using Eq. ((6)), the plane stress 

constitutive relation of a nonlocal plate becomes 

 

 

   

   

   

     
  

   
 

  

   
  

   

   

   

   

 

       
       
     

  

   

   

   

  

 
 
 

 
  

    

   

 
    

   
          

 
 

 
 

 

(12) 

 

 where,     and     are the normal stresses 

in   and   directions respectively and     is the in-

plane shear stress. For the case of an isotropic plate, 

the expressions for     in terms of Young's modulus 

  and Poisson's ratio   are given as         
 

    ,         
  

     and     
 

      
 and 

      is the nonlocal scale parameter. 

 Using strain displacement relationship (Eq. 

(8)), stress-strain relationship (Eq. (12)) and stress 

resultants definition (Eq. (11)), we can express 

stress resultants in terms of displacements as 

follows 
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where 
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 Using Eqs. (9) and (13) we get the 

following nonlocal governing partial differential 

equation in terms of flexural displacement   

 

  
   

   
  

   

      
 

   

   
      

   

   
 

   

   
   

    
  

   

   
  

   

      
 

   

   
     

  
   

      
 

   

      
   

   
  

   

      
  

   

         
 

   

      
    

   

   
  

   
   

      
 

   

      
    

 

 (15) 

 

 

Nanoscale Modelling of DLGS embedded in 

Elastic Matrix: Governing Equations 

 In order to determine the natural 

frequencies of a multi-layered graphene sheet, it is 

assumed that the layers behave like general form of 

isotropic plates stacking at the top of each other and 

bonding with van der Waals forces. Such 

assumption is based on the difference between the 

elastic moduli in two orientations of the sheet. For a 

simply supported plate, boundary conditions are 

considered somehow the components of in-plane 

forces in the equation of motion are dropped and 

merely bending components remain. The 

deflections of neighboring layers are coupled 

through the van der Waals interaction between any 

two adjacent ones. For small-deflection of the 

graphene sheet, it is assumed that the interaction 

pressure at any point between adjacent sheets 

linearly depends on the difference of their 

deflections. Thus transverse motion of N 

neighboring graphene sheets is described by N 

coupled equations as: 
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(16) 

 

 

 Where                   is the 

deflection of the     graphene sheet;       denotes 

the one side outermost graphene sheet and      , 

the other side outermost graphene sheet.   is the 

pressure per unit area, acting on both outermost 

graphene sheets due to the surrounding elastic 

medium and     is the carbon–carbon van der 

Waals interaction coefficient. 

 The pressure that is exerted on sheet i due 

to the vdW interaction between layers      and D is 

the bending stiffness of the individual sheet. We 

only consider infinitesimal vibration, and thus the 

net pressure due to the vdW interaction is assumed 

to be linearly proportional to the deflection between 

two layers. Consider the DLGS as shown in Figure 

1. The two graphene sheets of the DLGS are 

referred to as GS-1 and GS-2. The GSs are 

considered to be of thickness . Vertically 

distributed springs couples the two GSs. The 

springs may be used to substitute the electrostatic 

force, elastic medium, van der Waals forces or 

forces due to optomechanical coupling between the 

two GSs. 

 

 
 

Fig. 1. Mathematical idealization of (a) single layer graphene sheet and (b) double layer graphene sheet. 
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 The equilibrium distance between GSs is 

around 0.34 nm, and thus the initial pressure 

between layers can be ignored if the initial 

interlayer space is taken as 0.34 nm. As 

infinitesimal deformation is considered, the 

pressure can be assumed to be linearly proportional 

to the deflection between two graphene layers: 

 

      
                                    (17) 

 

 where the coefficients     are given by 

 

      
   

  
 

 
   

  
 
 

 
 
 

 
     

   
  

 

   

     

    
 
 
 
  

 

 
 
  

       
  

 
   

 
  

 

   

     

    
 
 
 
 

 

       
 
  

 

(18) 

 

 where   is the total number of layers of the 

multi-layer graphene sheet (MLGS),         is 

the C –C bond length,    
  

 
 (where    is the 

coordinate of the     layer in the thickness direction 

with the origin at the mid-plane of the GSs), and   

and   are parameters that are chosen to fit the 

physical properties of the material. The values of 

interaction coefficients for the present three-layer 

graphene system are calculate and are given in 

Table 1. 

 
Table 1. van der Waals (vdW) interaction coefficients     

(        ) between layers   and   of a double-layered 

graphene sheet 

 

Number 

of layers (N) 
            

      0 -108.651 

      -108.651 0 

 

Nonlocal governing equations of single layer 

graphene sheet embedded in polymer medium 

 A single-layered rectangular GS embedded 

in an elastic medium (polymer matrix) is 

considered. The chemical bonds are assumed to be 

formed between the GSs and the elastic medium. 

The polymer matrix is described by a Pasternak 

foundation model, which accounts for both normal 

pressure and the transverse shear deformation of the 

surrounding elastic medium. When the shear effects 

are neglected, the model reduces to Winkler 

foundation model. The normal pressure or Winkler 

elastic foundation parameter is approximated as a 

series of closely spaced, mutually independent, 

vertical linear elastic springs where the foundation 

modulus is assumed equivalent to stiffness of the 

springs. The normal pressure and the 

incompressible layer that resists transverse shear 

deformation by Winkler and Pasternak foundation 

model are expressed as 

 
                                                        (19) 
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 where    and    denote the Winkler 

modulus parameter and the shear modulus of the 

surrounding medium, respectively. 

 The nonlocal governing equation of single 

layer graphene sheet embedded in polymer elastic 

medium under thermal loading is given as: 
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Nonlocal governing equations of double layer 

graphene sheet embedded in polymer medium 

 The nonlocal governing equation of double 

layer graphene sheet embedded in polymer elastic 

medium under thermal loading is given as: 
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 (24) 

 

 Equations (23) and (24) represent the 

complete governing equations of the double layer 

nanoplate system under consideration with thermal 

and small scale effects. 

 

Solution of Governing Equations: Thermal 

Vibration Analysis 

 The thermal vibration analysis formulation 

begins by assuming a solution of the displacement 

field. In particular, time harmonic waves are sought 

and it is assumed that the model is unbounded in 

  direction (although bounded in   direction). 

Thus the assumed form is a combination of Fourier 

transform in   direction and Fourier transform in 

time 

                      

 

   

 

   

         
       

 

(25) 

 

 The     is the circular frequency and m, n 

are the wavenumbers along X and Y directions, 

respectively and     . Here          and 

        . 

 
For Single Layer Graphene Sheet Embedded 

In Elastic Medium 
Substituting 

                         
   

 
            

       in 

Equation (22), leads to 
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 For non-trivial solution of     
, the above 

equation can be written as 

 
       

     
    

          
    

      
 

    
    

    
        

    
    

  
    

      
    

   

          
    

          
    

  
    

    
    

    
 (27a) 

 

 This implies 

 
          

    
      

    
    

  
    

    
    

      

        
     

    
   

               
    

        

      
    

      

 (27b) 

 

 Now, this relation is solved for natural 

frequencies of the SLGS as 
 
  

 
    

    
             

    
               

    
     

           
    

     

 

 

(27c) 
Where            
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 It can be seen that the frequencies are 

mainly function of the mode numbers and the 

nonlocal scale parameter. The effect of these 

parameters on the frequency of SLGS is discussed 

in the next section. 

 

Double Layer Graphene Embedded In Elastic 

Medium 
Substituting 
          
      

         
   

 
            

       

in Equations (23) and (24), leads to 
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(30) 

 

 The above two equations can be written in 

matrix form as: 
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 where 
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 For non-trivial solution of     
and    

, 

we can get the following determinant as: 

 

 
      

    

         
               (33) 

 

 We need to solve this equation for 

obtaining the natural frequencies. Expanding Eq. 

(33) we can get the following algebraic equation in 

natural frequencies of the double layer graphene 

system: 

 

  
                

          
     

 

(34) 

 

 The solution of the above equation is 

obtained as: 

 

           
        

   
                         (35) 

 
where 

 

     
                                   

  
 

(36) 

 

 The numerical experiments carried out on 

the SLGS and DLGS are presented and discussed in 

detail in the next section. 

 

 

RESULTS AND DISCUSSION 
 

 In this paper, the nonlocal plate theory is 

developed to study the thermal vibration behavior 

of single and double layer nanoplates. To illustrate 

the effects of the nonlocal small scale, temperature, 

mode number and size the non-dimensional natural 

frequencies are computed and plotted. 

 A detailed comparison of the present 

results with the previous results for isotropic case 

are given in Tables 1, 2 and 3.For comparison of 

present results with the available literature results 

(as shown in Table-1), frequency ratio (FR) is 

defined as 

 

   
   

  
          (37) 

 

 where     is the natural frequency 

calculated using nonlocal elasticity theory and    
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is the frequency calculated using the local elasticity 

theory. 
 Properties of the graphene sheet in the 

validation analysis are considered same as 

mentioned in the reference [19]. Young’s 

modulus             , Poisson’s ratio    
     , density                and thickness 
             are calculated. In Table 2, we 

presented the frequency ratios of the graphene sheet 

obtained from the present model with the results 

available in the literature [19]. From Table 2, one 

could observe that the present results are in good 

agreement with the results available in the literature 

[24, 37]. 

 
Table 2. Comparison of results for vibration of the graphene 

sheet for all edges simply supported 

(          and          ). 

 

  (nm2) FR [18] FR [19] FR [present model] 

0 1 1 1 

1 0.9139 0.9139 0.9139 

2 0.8467 0.8466 0.8467 

3 0.7925 0.7926 0.7925 

 

 

 The free vibration analysis of the single 

layer graphene sheet performed using present 

nonlocal plates theory are compared with the 

molecular dynamics simulation and the generalized 

differential quadrature results available in ref. [47]. 

The mechanical properties of graphene sheet 

considered for this comparisons is Young’s 

modulus E = 1 TPa, Poisson’s ratio ν = 0.16, 

density ρ = 2250 kg/m
3
 and thickness h = 0.34 nm. 

Table 3 show the frequencies obtained using the 

nonlocalelasticity and the molecular dynamics, 

while considering the influence of size of the 

graphene. The dispersive behavior of frequencies in 

the nonlocal model is clearly observed. However, 

when larger graphene sheets are considered, the 

difference between the frequency values 

diminishes. This is obvious as the size-effects 

reduce with the increase of size of the single layer 

graphene. Table 3 give the frequencies of simply-

supported zigzag and armchair single layer 

graphene sheets with different side lengths, 

respectively. It is evident from the results that 

armchair sheets generally have relatively higher 

resonant frequency compared to zigzag sheets of 

the same dimensions, especially for shorter sheets. 

It can be observed that the frequencies obtained 

from the present model are exactly matching with 

the values presented in ref. [47]. 

 The room or low temperature (i.e., 

thermal conductivity                ) and 

high temperature (i.e., thermal conductivity 

             ) used for the nanostructures 

are considered [48-49]. The temperature change is 

assumed in the range of       to     . The 

interaction coefficient between two layers C12 is 

given in Table 1, polymer matrix Winkler modulus 

KS = 1.13E18 Pa/m and polymer matrix shear 

modulus KG = 1.13 Pa/m. Though the value of 

nonlocal parameter g has not been exactly known 

for graphene sheet, from literature it is pointed out 

that value of g should be less than 2 nm. 

 The fundamental variation of the natural 

frequency of the single layer graphene sheet 

obtained from the classical continuum model (g = 

0) with the wavenumber n is plotted in Figure 2. It 

can be observed that the relation between the 

natural frequency and the mode number is 

nonlinear. As the wavenumber value increases the 

value of the fundamental frequency also increases. 

This is the valid phenomena for all the type of two-

dimensional structures [50]. 

 

 
 

Fig. 2. Variation of the fundamental natural frequency of single layer 

graphene sheet with the wavenumber obtained from classical plate 

model. 
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Table 3. Validation of results for vibration of the armchair and zigzag single-layered graphene sheet for all edges simply supported 

obtained from molecular dynamics and the nonlocal plate theory (solved via generalized differential quadrature method) available in 

literature and the present nonlocal plate theory without consideration of thermal and polymer matrix effects. 

 

Size of graphene 

(a nm X b nm) 

Molecular Dynamics 

Simulations (THz) [38] 

                  

(THz) [38] 

                  

(THz) [Present] 

Armchair Zigzag Armchair Zigzag Armchair Zigzag 

10 x 10 0.0595014 0.0587725 0.0592309 0.0584221 0.05923 0.05841 

15 x 15 0.0277928 0.0273881 0.0284945 0.0202888 0.02845 0.02030 

20 x 20 0.0158141 0.0157524 0.0165309 0.0164593 0.01653 0.01646 

25 x 25 0.0099975 0.0099840 0.0107393 0.0107085 0.01074 0.01071 

30 x 30 0.0070712 0.0070655 0.0075201 0.0075049 0.00752 0.00750 

35 x 35 0.0052993 0.0052982 0.0055531 0.0055447 0.00555 0.00555 

40 x 40 0.0041017 0.0040985 0.0042657 0.0042608 0.00426 0.00426 

45 x 45 0.0032614 0.0032609 0.0033782 0.0033751 0.00338 0.00337 

50 x 50 0.0026197 0.0026194 0.0027408 0.0027388 0.00273 0.00274 

 

 

 The effects of the temperature and the 

mode number (m) on the natural frequency of the 

single layer graphene sheet are plotted in Figures 3-

5 with the mode number (n). The effects of local 

and nonlocal elasticity are also considered for 

better comparison. Figures 3-5 are plotted for m = 1 

to 3, respectively. It can be observed that all of the 

natural frequencies become lower with the scale 

coefficient increasing. Furthermore, for different 

values of m, the natural frequencies at the room or 

low temperature will be higher than those at the 

high temperature. As nonlocal scale parameter 

increases form 0 nm to 1nm, it can be observed that 

the effect of the temperature is highly dominant and 

it should be considered for the design of the 

nanoscale devices that make use of the thermal 

vibration properties. In these figures it has been 

observed that the presence of nonlocal scale 

parameter reduced the natural frequency of the 

single layer graphene by almost 50% as compared 

to the classical elasticity. As we further increase the 

value of the nonlocal scale parameter, say from 0.5 

nm to 1.0 nm, is has also been found that the 

difference is increasing. If we design the nanoscale 

devices with the results of the classical elasticity, 

whose results are over estimated (see Figs. 3-5), the 

design will not lead to satisfy the desirable 

requirements. It will fail within the half of the 

frequency band specified. So, it can be concluded 

that the present nonlocal model is a very efficient 

and the results are valid, can be used to design and 

development of the futuristic nanoscale devices. 

The other important aspect is the influence of the 

temperature. The classical elasticity, which is a 

scale free theory, calculations shows that the 

temperatures effects and are negligible on the 

natural frequencies of the graphene (Figures 3a, 4a 

and 5a). The nonlocal elasticity theory shows the 

temperature effects are predominant as we increase 

the small scale effects (Figures 3b, 3c, 4b, 4c, 5b 

and 5c). Such major effects were not captured by 

the classical theory of elasticity. 
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Fig. 3. The variation of natural frequency of single layer graphene with the wavenumber ( ) for various temperature effects (low and high) obtained 

from local and nonlocal elasticity theories and for      (a)       , (b)          and (c)          

 

 

 
 

Fig. 4. The variation of natural frequency of single layer graphene with the wavenumber ( ) for various temperature effects (low and high) obtained 

from local and nonlocal elasticity theories and for      (a)       , (b)          and (c)         . 
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Fig. 5. The variation of natural frequency of single layer graphene with the wavenumber ( ) for various temperature effects (low and high) obtained 

from local and nonlocal elasticity theories and for      (a)       , (b)          and (c)         . 

 

 

 The variation of the natural frequency of 

the single layer graphene sheet with the aspect ratio 

of ratio of the side lengths of the sheet are plotted 

in Figure 6. In these figures, the effects of the 

elastic polymer matrix, temperature, mode number 

and the nonlocal scale effects are also considered. 

From Figure 6, it can be observed that the 

frequency increases with the mode number. As the 

aspect ratio of the graphene increases the natural 

frequencies are converging to very small values. 

Figures 6a and 6b are plotted for the local elasticity 

calculation without and with matrix effects, 

respectively. It can be seen that as per the classical 

elasticity calculation concern, the effect of matrix is 

not significant on the natural frequencies of the 

graphene. But from Figures 6c and 6d, it can be 

observed that the effect of the matrix is significant 

on the natural frequencies of the graphene because 

of the cushioning effect onto the graphene. So, it is 

a serious issue while designing the nanoscale 

devices. Similar temperature effects are observed as 

discussed for Figures 3-5. 

 It is noted when the aspect ratio is less 

than 1.0, the difference between the vibrational 

frequencies pertaining to different modes is almost 

noticeable. But, when the aspect ratio increases, 

difference between the corresponding values 

decreases. It implies that the effect of the 

constraints on the frequencies lowers as if the 

multi-layered graphene sheet is modeled without 

any constraints.  

 Also, the mode shapes illustrated in 

Figure 7 imply that for the lower fundamental 

frequency, the adjacent layers move in the same 

direction, yet for the higher fundamental frequency, 

the associated mode shapes move in the opposite 

direction and distort due to the inverse deflections 

of the adjacent layers. Also, the mode shapes 

illustrated in Figure 7 corresponding to higher 

mode numbers render the same results. From 

Figure 7a to 7d the mode number increases. These 

mode shape plots are helpful in understanding the 

deformation behavior of the graphene under 

dynamic environment. The three-dimensional and 

the top views of these mode shapes are also given 

in Figure 7 for clear understanding the phenomena. 
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Fig. 6. The variation of natural frequency of single layer graphene with the ratio of the side lengths for various temperature effects (low and high) 

obtained from local and nonlocal elasticity theories, effect of various mode numbers and the effect of the embedded elastic medium: (a)        

and without matrix, (b)        and with matrix, (c)          and without matrix and (d)          and with matrix. 

 

 
 The variation of the natural frequencies 

(   and   ) of the double layer graphene sheet 

with the aspect ratio of ratio of the side lengths of 

the sheet are plotted in Figure 8. In these figures, 

the effects of the mode number and the nonlocal 

scale effects are also considered. From Figure 8, it 

can be observed that the frequencies increase with 

the mode number. As the aspect ratio of the 

graphene increases the natural frequencies are 

converging to very small values. Similar matrix 

effects as obtained for single layer graphene are 

observed for this case also. So, it is a serious issue 

while designing the nanoscale devices. It is noted 

when the aspect ratio is less than 1.2, the difference 

between the vibrational frequencies pertaining to 

different modes is almost noticeable. But, when the 

aspect ratio increases, the difference between the 

corresponding values are decreases. As the 

nonlocal scale increases the magnitude of the 

frequencies decreases as shown in Figure 8a-8c. It 

also clear from this figure is that the natural 

frequencies increase as the mode number increases. 

For higher aspect ratios the difference natural 

frequencies can be simply neglected. 

 The effects of the mode numbers (m, n) 

on the natural frequencies of the double layer 

graphene are captured in the Figure 9 for local and 

nonlocal elasticity cases. The classical elasticity 

calculations show that the frequencies increase with 

the mode number n, indefinitely as shown in Figure 

9a. But the nonlocal elasticity calculations show 

that the natural frequencies cannot increase 

indefinitely. Based on the scale parameter the 

natural frequencies are converging as the mode 

number n increases as plotted in Figures 9b and 9c. 

In the same time the magnitude of the frequency is 

also decreases as the scale parameter become 

stronger. 
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Fig. 7. Mode shapes of the single layer graphene sheet. 
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Fig. 8. The variation of natural frequency of double layer graphene 
with the ratio of the side lengths for various temperature effects (low 

and high) obtained from local and nonlocal elasticity theories and 

effect of various mode numbers: 

(a)       , (b)          and (c)         . 

 

 

 
 

Fig. 9. The variation of natural frequency of double layer graphene 

with wave number (n) for various mode numbers (m): (a)       , 

(b)          and (d)         . 
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 The temperature effects on the variation 

of the natural frequencies of the double layer 

graphene are plotted in Figure 10. It has been found 

that the temperature effects on the double layer 

graphene sheet are negligible because of the van 

der Waals interaction between the layers. The 

surrounding polymer matrix and the van der Waals 

interaction made the double layer graphene more 

stable to external thermal environment. Such results 

are new and are useful for the design and 

development of futuristic nano-machines. The 

nonlocal effects are similar to those discussed in 

the previous paragraphs. 

 The first four modes of a double layer 

graphene are plotted in Figure 11. The undeformed 

double layer graphene is shown in Figure 11a. Each 

graphene in double layer graphene system are of 

5nm by 5nm is considered for the analysis. 

 To illustrate the dependence of small 

scale effect on number of layers, a multilayered 

graphene sheet with the same properties as 

described in the previous section has been 

considered. The sheet is assumed to be free from 

polymer matrix. It can be clearly observed that 

nonlocal effect is negligible for 1st mode while it is 

significant for higher modes. Further nonlocal 

effect can be seen to be increased with increase in 

number of layers. This observation can be 

attributed to the fact that the nonlocal effect for 

each plate reinforces each other to produce greater 

nonlocal effect in multilayered graphene sheet. 

 

 
 

Fig. 10. The variation of natural frequency of double layer graphene with mode number (n) for various temperature effects (low and high) obtained 

from local and nonlocal elasticity theories (a)       , (b)          and (c)         . 
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Fig. 11. Mode shapes of double layer graphene sheet 

 

 

CONCLUSIONS 
 

In this paper, based on the nonlocal 

continuum model, the thermal effects on the 

vibration properties of the double-layered 

nanoplates are studied. The governing equation and 

the natural frequencies are derived with the axial 

stress caused by the thermal effects. The influences 

of the small scales coefficient, the room or low 

temperature, the high temperature, the half wave 

number, the temperature change and the width ratio 

on the vibration behaviors are discussed, 

respectively. The numerical simulations are 

performed and it can be concluded that the small 

scale effects are significant when the wave numbers 

are larger. Although the temperature change is the 

same, the natural frequencies are different for the 

case at the room or low temperature and the high 

temperature. Furthermore, the behaviors of the 

frequency ratio are quite different for different 

modes. This work is expected to be useful to design 

and analyze the vibration properties of nano scale 

structures and devices in the nano-electro-

mechanical and nano-opto-mechanical systems. 
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