
 131 
 

   Submit your manuscript to www.ijnd.ir                                                                                                                                                                      

 

Int. J.Nano Dimens. 4(2): 131-134, Autumn 2013                                                               
ISSN: 2008-8868 

 
 

Buckling of nanotubes under compression considering 

surface effects 
 

 

 

ABSTRACT 

 
   In this paper, the modified Euler-Bernoulli beam model is 

presented to examine the influence of surface elasticity and residual 

surface tension on the critical force of axial buckling of nanotubes in the 

presence of rotary inertia. An explicit solution is derived for the buckling 

loads of microscaled Euler beams considering surface effects. The size-

dependent buckling behavior of the nanotube due to surface effects is 

well elucidated in the obtained solutions. The critical forces are evaluated 

for axial buckling of cantilever beams. The results are compared with 

those corresponding to the classical beam model. The influences of the 

surface effects on the critical forces are discussed in detail. 

 

Keywords: Nanotubes; Nanowire; Surface effect; Buckling; Euler-

Bernoulli beam model. 

 

 

INTRODUCTION 
 

 In the last few years it has been received increasing 

attentions for the importance of surface effects on the mechanical 

properties of micro/nanoscaled structures due to their potential 

applications of micro/nano-beam or tube-like structures in micro/nano-

electromechanical systems (MEMS, NEMS) and atomic force 

microscopy (AFM) devices with high sensitivity and high frequency 

[1,2]. In contrast with large scales, the surface effects cannot be 

ignored in atomistic scales because the volume ratio of the surface 

region to the bulk is large [3]. For aforementioned applications and 

reason, understanding the exact characterization of the mechanical 

properties of these micro/nanoscaled structures including surface 

effects are of fundamental concern in design and predicting 

performance of the devices. In addition, some experimental techniques 

and atomistic simulations are developed to measure the material 

properties for the purpose of disclosing the phenomena of surface 

effects [4].  
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 The surface elasticity theory has been 

adopted to illustrate various size-dependent 

phenomena at the micro/nanoscale, and the 

predictions fit well with atomistic simulations and 

experimental measurements [5,6]. He and Lilley [6] 

studied the elastic behavior of static bending of 

nanowires considering surface effects and 

compared their results by experiment. Recently 

beam models are used to explain vibration of many 

micro/nanoscaled structural elements such as 

beams, wires, and tubes [7-9]. For example, 

Abbasion and et al. [7] studied the free vibration of 

Timoshenko microbeams in the presence of surface 

elasticity and explored the differences of results 

compared to the classic theory. For the applications 

of nanotubes as sensors, the axial buckling is of 

special interest. Recently, Wang and Feng [9,10] 

explored the surface effects on the axial buckling of 

nanowires using refined Euler and Timoshenko 

beam theory. The purpose of this paper is to 

investigate the coupled effects of surface elasticity, 

residual surface stress and rotary inertia on the axial 

buckling behavior of nanotubes. The Euler beam 

theory integrated with the surface elasticity model 

is applied to derive the analytical solutions of the 

critical buckling force of the nanotubes. 

 

 

EXPERIMENTAL 
 

Problem solution 

 Generally, surface effects on the 

mechanical behavior of nanoscaled materials and 

structures can be examined by considering surface 

energy and/or surface stresses. According to Gibbs 

[11] and Cammarata [12], the surface stresses 

tensor   
 ,          , is related to the surface 

energy density   through the surface strain tensor 

   
  by 

   
       

  

    
             (1)  

 

 The one-dimensional and linear form of 

equation (1) reads 
 

                           (2) 

 

 Where    and    are the residual surface 

tension under unstrained condition and surface 

Young’s modulus which can be determined by 

atomistic simulations or experiments [13], 

respectively. Axial buckling of a nanotube having 

length   and inner and outer radii    and    is 

shown in Figure 1.  

 

 
 

Fig. 1. (color online) (a) Buckling of a nanotube under uniaxial 
compression,(b) Cross-section view of the tube 

with two internal and external thin layers. 

 

 

RESULTS AND DISCUSSION 
  

The Young’s modulus and mass density of the 

nanotube are denoted as   and  , respectively. The 

effect of surface elasticity, expressed by the second 

term in equation (1) or (2), can be modeled by two 

thin layers with surface elasticity modulus of    

and   . Denote the thickness of inner and outer 

layer by    and   , respectively. In order to 

regenerate the idealized surface with zero thickness 

assumed in the surface elasticity theory, we can let 

  approach zero while keeping     and      as the 

constant of surface stiffness    [13]. Therefore, the 

effects of surface elasticity on the bending of a 

beam can be admitted by the following effective 

flexural rigidity [8]: 
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              (3) 

 

 When the radii are of nano orders, the 

effect of    cannot be ignored. The effect of the 

residual surface stress on the nanotube is 

determined by the Laplace-Young equation. The 

stress jump across each surface     
     

   is 

related to the curvature tensor       of the surface 

as follows: 

 

    
     

          
                                 (4) 

 

 Where    
  and    

  are the stresses above 

and below the surface, respectively,    is the unit 

vector normal to the surface. Therefore, the 

Laplace-Young equation in equation (4) predicts 

the distributed transverse loading      on the beam 

[8] 

         
   

             
   

        (5) 

 

 Where  a constant depending on the 

residual is surface tension and   denotes transverse 

displacement along   axis. The governing equation 

of the nanotube concerning both surface elasticity 

and residual surface tension becomes 

 

 
  

 
   

    
   

   

           
    

   
   

   

              
   

   
   

 

(6) 

 Solving equation (6) under given 

conditions at the fixed-free ends of the beam, the 

critical force of axial buckling is obtained as 

follows 

 

    
   

  
 
     

    
  

 
       

    
             .       

 

(7) 

 

 Here,   is the length of the nanotube and   

is a dimensionless constant depending on the 

support conditions at the two end and for a fixed-

free beam, which is our problem support condition, 

     . 

 As an example, we consider the critical 

axial force of a fixed-free anodic alumina nanotube 

whit crystallographic of       direction. The 

material constants are given as         , 

        , 

            ,              and    
           [5]. The critical axial forces are 

normalized with respect to the classical Euler’s 

beam critical forces to evaluate the deviations and 

short comings of classical theories in accurately 

predicting the static behavior of nanoscaled 

structure elements. Figure 2 illustrates the size 

dependence in the buckling load ratio of Euler 

beam model including the surface effects in 

comparison to classical solutions of Euler beam 

model. Figure 2 shows the critical compressive 

force       
   with respect to the outer radius of 

nanotube    performed for several cases of 

constant     ratios, where 

   
         

    
        is the critical axial 

force obtained by the classical Euler model. It is 

observed that as the outer radius increases its 

influence diminishes and the curves for various 

     tend to get closer to classical Euler beam 

critical axial load. In addition, the surface effects on 

the critical load are more prominent for a slender 

nanotube with a bigger ratio     . 

 

 
 

Fig. 2. (color online) Influence of surface effects and rotary inertia on 

the critical compressive load of the nanotube for         . 

 

 

 Figure 3 displays the buckling load ratio 

      
   of a nanotube for different ratio     . The 

influence of surface effects on the critical axial load 

becomes extremely significant as the ratio      

increases in the range of nanometers. 

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

Ro (nm)

B
u

c
k

li
n

g
 L

o
a
d

 R
a
ti

o

 

 

Classical Euler Beam

L/Ro = 20

L/Ro = 40

L/Ro = 60

L/Ro = 80



Int. J.Nano Dimens. 4(2): 131-134, Autumn 2013                                                                                                         J. E. Jam et al. 

 

 

 
134 

 
Submit your manuscript to www.ijnd.ir   

 

 
 

Fig. 3. (color online) The effect of aspect ratio      on the critical 

compressive load for         . 

 

 

CONCLUSIONS 
 

In conclusion, this study predicts the size 

dependence in buckling analysis of nanotubes 

based on micro/nanoscaled Euler beam model. The 

outcome of the theoretical analysis represents that 

surface effects and rotary inertia can effect 

significantly on the critical buckling loads of 

nanotubes. The surface effects on the critical load 

tend to diminish when the volume of a nanotube 

increases while size ratios of its geometry remain 

constant. The surface effects with positive surface 

constants tend to increase the critical axial load in 

comparison to classical Euler beam model. The 

present study is crucial for design of nanoscaled 

chemical and biological measurement devices. 
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