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Thermal conductivity of Water-based nanofluids: Prediction 

and comparison of models using machine learning 
 
 

 

ABSTRACT 

 
   Statistical methods, and especially machine learning, have been 

increasingly used in nanofluid modeling. This paper presents some of the 

interesting and applicable methods for thermal conductivity prediction 

and compares them with each other according to results and errors that 

are defined. The thermal conductivity of nanofluids increases with the 

volume fraction and temperature. Machine learning models were 

proposed to represent the thermal conductivity as a function based on the 

temperature, nanoparticles volume fraction and the thermal conductivity 

of the nanoparticles. The results of models were in appropriate agreement 

with the experimental data. This work represents 8 machine learning 

models for the predicting the thermal conductivity of water-based 

nanofluids. The models have been trained and tested on two separate sets 

of data. Three metrics have been employed to evaluate the performance 

of the models. The best method for each system is selected using results. 

 

Keywords: Nanofluids; Modeling; Machine learning; Thermal 

conductivity; Prediction. 
 

 

INTRODUCTION 
 

 Interest in nonmaterial has increased in recent years because 

of their unique physical and chemical properties [1]. Heating or 

cooling fluids is significant for many industrial segments, including 

energy supply and generation, transportation and electronics. The 

thermal conductivity of these fluids plays a critical role in the 

improvement of energy-efficient heat transfer apparatus [2]. The plan 

of escalating thermal conductivity of fluids with conducting particles 

suspended on them is not novel [3]. The idea was first initiated by a 

series of research works at the Argonne National Laboratory and 

probably Choi [4] was the first to call the fluids with particles of 

nanometer size suspended in them as ‘‘nano-fluids,’’ which has 

obtained amicability. The word nanofluid refers to the suspension of 

nanometric size (the limit is usually established in 100 nm) particles in 

any base fluid [5].   
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 Suspensions containing a small amount of 

nanoparticles have been shown to have higher 

thermal conductivities compared with the base 

fluids [2, 6- 9]. The increased thermal conductivity 

of nanoparticles suspension appears to be highly 

dependent on the densities of the particle and the 

thermal conductivity of the base fluid [6, 7]. 

Recently, researchers have shown that nanofluids 

including CuO or Al2O3 nanoparticles in water or 

ethylene glycol demonstrate improved thermal 

conductivity [6]. There are two different 

approaches to investigate the enhanced heat transfer 

of the suspensions: the two-phase and the single-

phase one. The first provides the possibility of 

understanding the functions of both the fluid phase 

and the solid particle in the heat transfer process, 

but needs much computation time and computer 

capacity [9]. By combining Lagrangian statistics 

and direct numerical simulation (DNS)this 

approach applied to analyze the mechanism of two-

phase heat and turbulent transport by solid particles 

(on the micrometer order) suspended in a gas flow 

[10].The mixture model, based on a single fluid two 

phase approach assumes that the coupling between 

phases is strong, and particles closely follow the 

flow. The two phases are assumed to be 

interpenetrating, meaning that each phase has its 

own velocity vector field and slip velocity (relative 

velocity) is defined as the velocity of the 

nanoparticles phase in relation to the velocity of the 

base fluid phase. Within any control volume there 

is a volume fraction of primary phase and also a 

volume fraction of the secondary phase. This model 

is employed in the simulation of nanofluids [11]. 

This model is more consistent with the 

experimental results. The second approach assumes 

that both the fluid phase and particles are in a 

thermal equilibrium condition and flow at the same 

velocity. This approach which is based on the 

single phase flow is simpler and takes less 

computation time. In cases that the main interest is 

focused on heat transfer calculations, this approach 

may be more suitable [9]. Homogenous model is 

one of the nanofluid single phase models. This 

model differs from conventional pure fluid model 

only in the effective properties. It means that the 

continuity, Navier–Stokes and the energy equations 

are used with the nanofluid effective properties. 

According to this model, usual correlations of flow 

and heat transfer feature of a single phase fluid can 

be generalized on the nanofluid. Nanofluid studied 

based on this model which it is not able to predict 

the heat transfer features of nanofluids [12-14]. The 

present study aims to drive the mathematical model 

of the dispersion mechanism, and shows that this 

model has the ability to predict the nanofluid heat 

transfer more accurately.  Microscopic models are 

interesting to describe the effects of interactions 

between the nanoparticles and liquid particles. One 

such model, based on the Monte Carlo method, was 

successfully applied, in combination with fractal 

theory, to predict the effective thermal conductivity 

of nanofluids. A model proposed which is a 

combination of Monte Carlo simulations and the 

fractal geometry theory [15]. The predictions have 

shown appropriate agreement with the existing 

experimental data. The comparison of different 

approaches for numerical modeling on heat transfer 

of nanofluids was presented [16, 17]. The 

correlations for temperature dependent effective 

conductivity of water-based nanofluids were 

developed [18, 19]. A new model for assessing the 

effective viscosity of water-based nanofluids was 

developed [20]. Also, by knowing the inter-atomic 

potentials, computational tools consisting of the 

molecular dynamic simulation (MD) and the Monte 

Carlo (MC) methods have been employed to model 

the transport properties of CNTs [21-27]. MD 

simulation revealed that isolated SWCNTs had a 

very similar thermal conductivity as those of a 

hypothetical isolated grapheme sheet with the same 

number of atoms at certain temperatures [28]. In 

another study, the dependence of the thermal 

conductivity of a nanotube on its structure, defects, 

diameter and chirality was investigated [29, 30]. 

Much work has been devoted to the investigation 

on the enhanced thermal properties of nanofluid 

and its enhancement mechanisms. The thermal 

conductivity of copper nanoparticles measured in 

ethylene glycol and found that the increase in the 

thermal conductivity was twice the value predicted 

by the Maxwell effective medium theory [31]. The 

enhancement of the water–platinum nanofluids 

thermal conductivity estimated based on molecular 

dynamics simulation model and compared the 

results with the existing experimental results that 

indicated great enhancement in the thermal 

conductivity [32]. Four possible explanations 

suggested for the anomalous enhancement in the 

thermal conductivity of nanofluid and showed that 

the key factor in the understanding of the thermal 
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property of nanofluid is ballistic, rather than 

diffusive [33]. 

 The aim of this paper is to develop some 

models using machine learning to predict the 

thermal conductivity of water-based nano-fluids, 

based on the data coming from other studies. Then 

comparison between methods can be made based 

on errors that are defined. 

 

 

EXPERIMENTAL 
 

Machine Learning 

 In this work, functions are used for 

predicting thermal conductivity of nanofluid. Some 

functions are compatible with our data type, with 

default parameters. In the case of this problem, the 

compatible functions for predictions are used. 

 

Algorithms 

 Zero Regression (ZeroR) 

  Pseudo-regression technique always 

makes models with cross-validation coefficient. In 

the structure of this method the value of a property 

is usually predicted to be equivalent to its average 

value on the training set. This method predicts the 

mean for a numeric class and   the mode   for a 

nominal class. ZeroR is typically employed as a 

reference point for comparison with other 

regression techniques. 

 

 Linear regression 

  Linear regression is a type of 

regression method in which experimental data is 

used and modeling is performed by a function 

which is a linear combination of the model 

parameters. This combination depends on 

independent variables, the linear regression model 

that we have used is based on the Akaike criterion 

for model selection (AIC) [34], based on the 

Kullback–Leibler information between two 

densities, related to the true model and fitted 

model. 

 

 Least median square regression 

  One type of regression method is a 

least median squared linear regression algorithm 

that uses the linear regression class to form 

predictions. The functions of least squared 

regression method are produced from random 

samples of the data. The least squared regression 

with the minimum median squared error is selected 

as the ultimate model. The algorithm is based on 

the work of Rousseeuw and Leroy [35]. 

 

 Support vector machine regression 

  Support vector machines (SVMs) are 

a system of related managed learning methods used 

for regression and classification. Data is viewed as 

two sets of vectors in an n-dimensional space; an 

SVM will build a segregated hyperplane in that 

space, one which makes the most of margin 

between the two data sets.  For calculating of the 

margin, two parallel hyperplanes are constructed, 

one on each side of the segregated hyperplane, 

which are “pushed up against” the two data sets. 

Naturally, on excellent separation is achieved by 

the hyperplane that has the greatest distance from 

the adjacent data points of both sets, because in 

general the greater the margin the better the 

generalization error of the classifier. The 

parameters can be learned by means of different 

algorithms. The algorithm is chosen by setting the 

RegOptimizer. The most interesting algorithm 

(RegSMOlmproved), is due to Shevade, et al. and 

used as the default RegOptimizer [36]. The benefit 

of SVM regression models is their admirable 

general prediction accuracy. 

 

 IBK 

  The k-nearest neighbor’s algorithm 

(KNN) is a regression technique that classifies 

objects according to closest training examples in 

the feature space. It is a kind of instance-based 

learning, or lazy learning where the function is only 

approximated locally and all computational 

operation is delayed until regression. The KNN 

method is used for regression by simply assigning 

the property value for the item to be the average of 

the values of its k nearest neighbors. It is helpful to 

weigh the contributions of the neighbors; therefore 

the nearer neighbors give more to the average than 

the neighbors with more distance. The objects are 

characterized by position vectors in a 

multidimensional feature space, In order to identify 

neighbors. In the testing phase, the test example is 

represented like a vector in the feature space. 

Distances from this vector from all stored vectors 

are calculated and the k closest samples are chosen 

to find out the actual magnitude of the test case. 

This algorithm is sensitive to the organization of 

the data. The best choice of k is related to data; 
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usually, larger values of k decrease the influence of 

noise. Heuristic techniques like cross-validation 

can help to set a good k. 

 

 Multilayered perceptron 

  The multilayered Perceptron Artificial 

Neural Network is a type of machine learning 

methods. We used the Back propagation algorithm 

with a learning rate equal to 0.3[37, 40]. All the 

neurons had a sigmoid activation function. A 

momentum of 0.1 progressively decreasing until 

0.0001 has been used to escape local minima on the 

error surface. 

 

 M5P 

  M5P [38] is a method of regression 

that combines a conventional decision tree with the 

possibility of linear regression functions at the 

nodes. A decision-tree induction algorithm is used 

to build a tree initially; a splitting criterion is used 

instead of maximizing the information gain at each 

inner node.  This procedure minimizes the intra-

subset variation in the class values down each 

branch. Sharp discontinuities between the subtrees 

are harmful, so a smoothing procedure is used. This 

method combines the leaf model prediction with 

every node along the path back to the root, 

smoothing it at each of nodes by combining it with 

the predicted value from the linear model. Methods 

developed by Breiman et al. [39] for their CART 

system are adopted. All enumerated attributes are 

turned into binary variables therefore all the splits 

in M5P are binary. As to missing values, M5P 

applies a method of “surrogate splitting” that gets 

another attribute to split instead of place of the 

original one and employs it instead. In training part, 

M5P applies as surrogate attribute the class 

magnitude believing that this is the attribute that 

should be associated with the one used for splitting. 

At the end of splitting procedure, all missing values 

are changed by the average values of the 

corresponding attributes of the training example. In 

the testing part the average value of that attribute 

for all training instances that reach the node are 

used instead of an unknown attribute value. M5P 

produces compact and relatively comprehensible 

models. 

 

 Regression by discretization 

  Regression by Discretization is a 

regression scheme that uses each classifier on a 

copy of the data that has the class attribute 

discredited. The expected value of the mean class 

value for each discredited interval is the predicted 

value. This class supports conditional density 

estimation by constructing a univariate density 

estimator from the target values in the training data. 

Weight of training data is determined by the class 

probabilities. Some of metrics are employed to 

evaluate the performance of the models explained. 

 

Evaluation Metrics 

Some of metrics are employed to evaluate 

the performance of the models. In the next part 

these metrics are explained. 

 

 Correlation Coefficient 

  The correlation coefficient is a 

measure of how trends in actual values are 

followed by well trends in the predicted values. It is 

an evaluation of how well the predicted values 

from a predicted model fitthe real-life data. The 

correlation coefficient is a magnitude in the range 

of -1 and 1. If the predicted values and the actual 

values are independent and no relationship is 

between them, the correlation coefficient is close to 

0. If the strength of the relationship between the 

actual values and predicted values increases, so 

does the correlation coefficient. An ideal fit gives a 

coefficient of 1.0. Opposite but correlated trends 

result in a correlation coefficient magnitude limit to 

-1. Negative correlation values are not typically 

expected in the learning of a predictive model.  

 

 

 Mean absolute error 

  The mean absolute error averages the 

value of the every error without considers their 

sign. Mean-squared error tends to exaggerate the 

effect of outliers, but absolute error does not have 

this performance: all values of error are treated 

evenly according to their magnitude. 

 

Root Mean Squared Error 
A type of predictive regression model is 

the mean squared error (MSE) that is a different 

way to quantify the distinction between set of 

actual (target) values, xt and set of predicted values, 

xp. The root mean squared error (RMSE) is defined 

as: the mean absolute error averages the value of 

the every error without considering their sign. 

Mean-squared error tends to exaggerate the effect 
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of outliers, but absolute error does not have this 

performance: all values of error are treated evenly 

according to their magnitude. 

 

                                     
    

            
  

   

 
 

 

 

RESULTS AND DISCUSSION 
 

Error analysis 
 The experimental data used for the 

training of models has been previously achieved 

and fully described in Ref. [40].The error analysis 

for different methods is listed in Tables 1-3. Table 

1 shows the analysis of correlation coefficient for 

methods. Ideal value of correlation coefficient is 

equal to 1. Nearer to 1 shows better agreement 

between predicted and experimental data and 

nearer to 0 shows less agreement between them. As 

Table 1 show, best value of correlation coefficient 

for Al2O3data set is obtained from KNN method. 

Other method also indicates good prediction and 

negligible error. For CuO data set SMOreg shows 

the best result in comparison to other methods. In 

general correlation coefficient for Al2O3data set is 

better than CuO data set. This difference can be a 

consequent of data features like number of data and 

accuracy of them. 

 
Table 1(a,b). Analyzing of Correlation Coefficient 

 

(1a) 

Dataset ZeroR 
Linear 

Regression 
LeastMedSq SMOreg 

Al2O3 0.00 0.94 0.93 0.94 

CuO 0.00 0.89 0.89 0.90 

 

(1b) 

 

 Table 2(a, b) indicates the mean absolute 

error for methods based on two data set of CuO and 

Al2O3.This error is the type like thermal 

conductivity. Zero is the best value for mean 

absolute error and more limits to zero indicates 

more accuracy of predictions. Table 2(a, b) shows 

good magnitudes of this error for all methods 

generally. Among these methods most convenient 

value is derived from KNN method like correlation 

coefficient. Best value of mean absolute error for 

Cu data set is analyzed and KNN method has most 

accurate prediction. 

 
Table 2(a, b). Analyzing of   Mean Absolute Error 

 

(2a) 

Dataset ZeroR 
Linear 

Regression 
LeastMedSq. SMOreg 

Al2O3 0.0281 0.0098 0.0103 0.0100 

CuO 0.0179 0.0088 0.0088 0.0086 

 

(2b) 

 

 

 Table 3(a, b) shows the results of root 

mean squared error for methods based on two data 

set of CuOand Al2O3. Root mean squared error is 

the type of thermal conductivity like mean absolute 

error and ideal value for this error zero. KNN 

method has the best prediction for Al2O3dataset 

according to this error and results that were shown 

in the Table 2(a, b). These are interesting results by 

agreement among three error analyses because 

KNN is the best method in three error analysis. 

M5P shows the best result for CuO dataset 

according to Table 3(a, b). 
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CuO 0.85 0.87 0.90 0.83 

Dataset    IBK     
Multilayer 

Perceptron   
M5P   

Regression By 

Discretization 

Al2O3 0.0085     0.0115     0.0096  0.0091 

CuO 0.0082     0.0120     0.0086   0.0095 
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Table 3(a, b). Analyzing of Root Mean Squared Error 
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Al2O3 0.0344 0.0121 0.0127 0.0123 

CuO 0.0231 0.0112 0.0111 0.0109 

 

(3b) 

 

 

Result of Al2O3 dataset 
 Figure 1(a-d) presents the results 

predicted for the Al2O3as a function of the volume 

fraction of nanoparticles and temperature based on 

the KNN model. The KNN model is able to 

account for the increase in thermal conductivity for 

low nanoparticles volume fractions and the higher 

nanoparticles volume fractions. The KNN model 

also accounts very well for the change of 

temperature. The predicted values were calculated 

at several volume fractions to ensure the model was 

able to interpolate well between experimental 

points. In addition, the training of the model was 

performed with experimental data obtained at 

temperatures between 20 and 45°C and the network 

was validated for some experimental data obtained 

at this range. Notably, Phi is volume fraction, K is 

thermal conductivity experimental data and K'َ is 

thermal conductivity prediction. 

 

Result of CuO dataset 
 Figure 2(a, b) present the results of 

prediction using KNN model. The KNN model is 

employed to show the results as the example of 

machine learning methods.  . The model is able to 

account for the variation in thermal conductivity for 

low or high nanoparticles volume fractions. The 

KNN model also accounts very well for the 

temperature variations. The modeling was 

calculated at several volume fractions to ensure the 

model was able to predict the experimental data. 

The results are shown in two volume fractions as 

examples. 

 

 
 

Fig. 1(a-d). Effects of temperature on the thermal conductivity of Al2O3 nanofluid. 
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Fig. 2(a, b). Effects of temperature on the thermal conductivity CuO nanofluid. 

 

 

CONCLUSIONS 
 

Machine Learning methods; have been 

employed for predicting the value of the thermal 

conductivity of water-based nanofluids. This 

application is important because the ability of 

correctly predicting this value could help to select 

the best model. Thermal conductivity of Al2O3and 

CuO nanofluids was studied statistically. The 

thermal conductivity of nanofluids shows 

significant enhancement with nanoparticles volume 

fraction. At higher nanoparticles volume fractions, 

the thermal conductivities of CuO and 

Al2O3nanofluids are higher than the base fluid. The 

reason of this phenomenon can be the reduction of 

interparticle distances and the creation of chain-like 

structures of nanoparticles. The thermal 

conductivity of the base fluid also increases with 

increase in temperature. 
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