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ABSTRACT 

 
   This paper investigates the effect of different methods of carbon 

nanotubes distribution in a thin matrix on static and dynamic behavior of 

the nanocomposite. Five different symmetric patterns of distribution are 

considered, including four parabolic patterns and a linear one. For each 

pattern, the effective mechanical properties of the resultant 

nanocomposite are calculated using the rule of mixture. Influence of 

geometric parameters on static and free vibration responses of the 

nanocomposite plate are studied. Finite element modeling is created 

using Abaqus/CAE. The resulting responses for linear distribution of 

nanotubes are compared to a past work and good agreement is observed 

between them. The finite element simulations showed that in all different 

cases of geometric parameters, the value of non-dimensional static 

deflection of the mid-point of plate under a uniformly distributed load is 

minimized in the linear distribution pattern of carbon nanotubes case and 

will increase by changing the pattern to a parabola. This fact is vice versa 

about modal analysis. Linear distribution pattern of carbon nanotubes 

results in higher natural frequencies in comparison with the parabolic 

distributions of carbon nanotubes. 

 

Keywords: Carbon nanotube; Composite plate; Vibration; Finite 

element method; Functionally graded. 
 

 

INTRODUCTION 
 

 Severe competition for producing more effective and 

simultaneously more economical productions has made companies use 

novel materials instead of the old and classic ones. One of these 

prevalent novel materials is carbon nanotube (CNT). Carbon nanotubes 

have significant mechanical and electrical properties owing to their 

weird high ratio of length to diameter [1-3].  
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 It has been shown that it is possible to 

reach the same mechanical properties which we 

expect by addition of a certain value of micro-

scaled reinforce materials, if we add a remarkable 

less value of carbon nanotubes to the same polymer 

matrix [4-5]. 

Functionally graded materials (FGMs) are novel 

composite materials which the microstructural 

details are spatially varied through non-uniform 

distribution of the reinforcement phase [6-7]. 

Carbon nanotube reinforced composite (CNTRC) 

plates with functionally distribution of carbon 

nanotubes are widely being studied in recent years. 

For instance Hui Shen Shen et al [6] analysied  

thermal buckling and postbuckling behavior of 

these composite plates. They showed that the 

buckling temperature as well as thermal 

postbuckling strength of the plate can be increased 

as a result of functionally graded reinforcement. 

 Distribution pattern of carbon nanotubes in 

the base polymer matrix plate, is clearly effictive on 

the mechanical properties of final composite 

material. In a comparison of four different linear 

distribution patterns of carbon nanotubes by Ping 

Zhu et al.[8], as it is shown in Figure 1 it was 

concluded that if functionalization takes place as 

Figure 2, the central deflection of carbon nanotube 

reinforced composite (CNTRC) plate will be 

minimum and the natural frequencies are more than 

the corresponding values for other linear patterns of 

distribution. It is clear that the difference in static 

and vibration responses originates from the 

difference in mechanical properties in the different 

patterns of functionalization[9],[10]. Due to 

production limitations of functionally graded 

CNTRC plates in our desired pattern of 

functionalization, we may face to some deviations 

from our desired distribution pattern of the 

reinforcement. In this paper we are about to 

investigate the effect of these deviations on the 

macroscopic responses of CNTRC plates. This 

challenge is investigated using four parabolic-

boundaries of CNTs distribution patterns around 

the desired linear patterrn. 

 Ping Zhu and his colleagues used a 

combination of MD simulations and the rule of 

mixture developed for nanocomposites materials. 

The difference between the rule of mixture for 

simple composite and nanocomposite materilas is 

in nano-reinforcement efficiency factor. This factor 

is related to the orientation, length and volume 

fraction of the reinforcement phase and specially to 

the bond strength between the matrix and 

reinforcement phase. A common method to find 

this factor in different directions is to combine MD 

simulations or representative volume element 

method (RVE) with the rule of mixture. If we 

match the young moduli in longitudinal and 

transverse direction and the shear moduli for a 

certain volume fraction calculated using MD 

simulations or continuum models like RVE to the 

counterparts computed by the rule of mixture, the 

CNT efficiency parameters would be found. 

 

 
 

Fig. 1. Four different linear distribution patterns of CNTs, considered 

by Ping Zhu et al. [8] 

 

 

 
 

Fig. 2. X-form linear distribution of carbon nanotubes in a 

CNTRC plate 

 

 

 In this paper, dispersion of CNTs are 

considered as equal for all the cases through the 

width of nanocomposite plate (a in Figure 2). Due 

to functionally distribution of CNTs, the volume 

fraction of reinforcement in each elevation through 

z-axis will be different. In other words, the volume 

fractions of reinforcement and matrix phase are a 

function of z. Three cases of CNT volume fractions 
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are studied in this paper. We used the CNT 

efficiency parameters calculated in [8] for each case 

of CNT volume fractions. The effective mechanical 

properties of CNTRC plate for each z value are 

calculated using the rule of mixture and mentioned 

efficiency parameters. Then, the macroscopic 

simulations including  static and vibration analysis 

are carried out using FEM by ABAQUS/CAE. The 

plate is assumed to be thin, therefore we will have a 

plane stress analysis. 

 

 

EXPERIMENTAL 
 

Distribution patterns 

 Five different symmetric patterns of 

distribution are considered in this paper, including 

four parabolic patterns and a linear one as depicted 

in Figure 3. The linear and four parabolic patterns 

of functionally graded distributions of carbon 

nanotubes along the thickness direction of the 

nanocomposite plates are assumed to be as 

following for h=2 mm: 

 

𝑉𝐶𝑁𝑇 𝑧 =  19.74 8 𝑧 + 0.0001 − 0.197 𝑉𝐶𝑁𝑇
∗     𝑃𝑎𝑟𝑎1 

 

𝑉𝐶𝑁𝑇 𝑧 =  44.12 4 𝑧 + 0.0009 − 1.324 𝑉𝐶𝑁𝑇
∗     𝑃𝑎𝑟𝑎2 

 
𝑉𝐶𝑁𝑇 𝑧 = 2000 𝑧 𝑉𝐶𝑁𝑇

∗                                                   𝐿𝑖𝑛𝑒𝑎𝑟 
 

𝑉𝐶𝑁𝑇 𝑧 =  8.15 −4 𝑧 + 0.005 + 0.571 𝑉𝐶𝑁𝑇
∗     𝑃𝑎𝑟𝑎3 

 

𝑉𝐶𝑁𝑇 𝑧 =  6.64 −8 𝑧 + 0.008 + 0.597 𝑉𝐶𝑁𝑇
∗     𝑃𝑎𝑟𝑎3 

 

(1a) 

 

Where 

 

𝑉𝐶𝑁𝑇
∗ =

𝑊𝐶𝑁𝑇

𝑊𝐶𝑁𝑇 +  
𝜌𝐶𝑁𝑇

𝜌𝑚  −  
𝜌𝐶𝑁𝑇

𝜌𝑚  𝑊𝐶𝑁𝑇

 

 

(1b) 

 

 Where 𝑊𝐶𝑁𝑇 is the mass fraction of carbon 

nanotubes in the composite plate, and 𝜌𝑚  and 

𝜌𝐶𝑁𝑇are the densities of matrix and CNT 

respectively. 𝑉𝐶𝑁𝑇
∗  is the volume fraction of carbon 

nanotubes in the composite plate if carbon 

nanotubes have been dispersed uniformly in the 

volume of CNTRC plate. 𝑉𝐶𝑁𝑇  is the volume 

fraction of carbon nanotubes for each supposed 

function of dispersion.  Equation 1 shows that the 

volume fraction varies with z. Hence we have to 

divide the composite plate into different layers in z-

direction. In order to simplifying the calculations, 

we suppose that distribution of carbon nanotubes is 

uniform through each layer. In this paper, we 

considered 10 layers for each plate. 

 

 
 

Fig. 3. Supposed distribution patterns of carbon nanotubes in 
CNTRC plates 

 

 

The rule of mixture for CNTRC materials 
 The effective material properties of the 

two-phase nanocomposites, mixture of CNTs and 

an isotropic matrix can be estimated according to 

the rule of mixture [11], [12]. We can write the 

equations of mixture as: 

 
𝐸11 = 𝜂1𝑉𝐶𝑁𝑇𝐸11

𝐶𝑁𝑇 + 𝑉𝑚𝐸𝑚                              (2a) 
 

 
𝜂2

𝐸22
=

𝑉𝐶𝑁𝑇

𝐸22
𝐶𝑁𝑇 +

𝑉𝑚

𝐸𝑚                                                (2b) 

 

 
𝜂3

𝐺12
=

𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑚

𝐺𝑚                                                (2c) 

 

 
𝜐12 = 𝑉𝐶𝑁𝑇

∗ 𝜐12
𝐶𝑁𝑇 + 𝑉𝑚𝜐𝑚                                 (2d) 

 
𝜌 = 𝑉𝐶𝑁𝑇𝜌

𝐶𝑁𝑇 + 𝑉𝑚𝜌𝑚                                     (2e) 
  

 Where, 𝑉𝑚  is the volume fraction of 

isotropic matrix and𝐸11 , 𝐺12 represent the Young 

and Shear modulus of CNTRC plate in the relevant 
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directions. 𝜐12  and 𝜌𝑚  are the Poisson's ratios. 𝜐12  is 

considered as constant over the thickness of the 

functionally graded CNTRC plates. 𝜂𝑗  (𝑗 = 1,2,3) 

represents the effect of quality of dispersion and the 

length of nanotubes through the volume of isotropic 

matrix[8],[13]. 

 

  

RESULTS AND DISCUSSION 
 

 In the present paper, a is considered to 

have the same value as b, and b/h ratio varies from 

10 to 20 and to 50. Four boundary conditions are 

considered for the static analysis. CCCC, SSSS, 

SCSC and SFSF which represent fully clamped, 

fully simply supported, clamped and simply 

supported, simply supported and free respectively. 

The only considered case for modal analysis is the 

CCCC boundary conditions case. h is supposed to 

be 2 milimeters. Three cases are considered for 

𝑉𝐶𝑁𝑇
∗ in static analysis and only one case in modal 

analysis. For the case of 𝑉𝐶𝑁𝑇
∗ = 0.11, 𝜂1 = 0.149 and 

𝜂2 = 0.934. For the case of 𝑉𝐶𝑁𝑇
∗ = 0.14, 𝜂1 = 0.150 and 

𝜂2 = 0.941. For the case of 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜂1 = 0.149 and 

𝜂2 = 1.381.[8] In addition we assume that 𝜂2 = 𝜂3 

and 𝐺12 = 𝐺13 = 𝐺23. PmPv is considered as the 

matrix. The material properties of PmPv are 

assumed to be 𝜐𝑚 = 0.34, 𝜌𝑚 = 1150𝑘𝑔/𝑚3and 

𝐸𝑚 = 2.1 𝐺𝑃𝑎 at room temperature [14]. The 

mechanical properties of single-walled carbon 

nanotube (10,10) is considered as 𝜐12
𝐶𝑁𝑇 = 0.175, 

𝐸11
𝐶𝑁𝑇 = 5.6466 𝑇𝑃𝑎, 𝐸22

𝐶𝑁𝑇 = 7.0800 𝑇𝑝𝑎, 𝐺12
𝐶𝑁𝑇 =

1.9445 𝑇𝑃𝑎 and 𝜌𝐶𝑁𝑇 = 1400 𝐾𝑔/𝑚3[15]. 

 The mid-point static deflactions of 

CNTRC plates are illustrated in Table 1 for 

different volume fractions and width to height 

ratios under different boundary conditions. Further 

the six non-dimensional natural frequencies under 

CCCC boundary conditions 𝜔 = 𝜔(
𝑎2

ℎ
) 𝜌𝑚/𝐸𝑚  

found by Abaqus/CAE simulations are represented 

in Table 2. All the data for the linear distribution 

case are compared with a past work done by Ping 

Zhu et al.[8]. Whole of the compared values have 

reasonable and good agreement together. 

Maximum difference between the two cases 

(Present and Ping Zhu) is 5% which arises from 

difference in element types, number of supposed 

layers for the CNTRC plate and meshing method. 

 Figure 4 shows the first six natural mode 

shapes of a CNTRC plate for the case of b/h=0.17 

and distribution pattern of parabola 4 under fully 

clamped boundary conditions. The horizontal axes 

in Figures 5 to 11 represent the different types of 

carbon nanotubes distribution. As it is shown in 

Figures 5 to 8, the minimum central deflection 

pertains to the linear pattern of distribution. Farther, 

the central deflection difference between the linear 

pattern and parabola 3 is obviously more than the 

difference between the central deflection of the 

linear pattern and parabola 2. Hence we can 

conclude that if the distribution pattern of carbon 

nanotubes, deviates from linear to downward 

parabola pattern, we must expect a big jump in 

central deflection in comparison to upward 

parabola cases. As we see in Figure 3, carbon 

nanotubes in downward parabola patterns are more 

compressed than the upward ones. Therefore, 

compressing carbon nanotubes from the linear 

distribution pattern leads to a rather high increase 

in the central deflection of CNTRC plates. 

 Comparison of corresponding figures of 

different boundary conditions shows that the 

proportion of deflections related to different 

volume fractions, are higher in the case of CCCC 

boundary condition. Also for a distinct boundary 

condition, addition of width to thickness ratio, leads 

to produce lower proportion of central deflections 

of different volume fractions. Compression of three 

different volume fraction graphs by increasing the 

width to thickness ratio for each boundary 

condition proves this fact. 

 The trend is vice versa for the natural 

frequency case. Figures 9 to 11 illustrate this issue 

that as the distribution diverges from the linear 

pattern, the natural frequency will decrease. The 

simulations results represented in Table 2 approve 

this fact. The other important result is the 

difference between the effect of downward 

deviations from the linear distribution and upward 

deviations. The effect of upward deviations in 

increasing the mid-point static deflection and 

decreasing the natural frequencies are remarkably 

more than downward deviations effects. Therefore, 

compressing carbon nanotubes from the linear 

distribution pattern leads to a rather high decrease 

in the natural frequencies of CNTRC plates. 

 Also comparison of Figures 9 to 11 

shows that increasing the natural frequency 

number, will not have a remarkable affect on the 

proportion of natural frequencies related to 

different b/h ratios. 
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Table 1. Effect of distribution pattern of carbon nanotubes and volume fraction 𝑉𝐶𝑁𝑇
∗  and b/h ratio on the non-dimensional central 

deflection 𝑤 = −𝑤0/ℎ for CNTRC plates under a uniformly distributed load 𝑞0 = −0.1𝑀𝑝𝑎 and four different boundary conditions. 

 

𝑉𝐶𝑁𝑇
∗  b/h Distribution 

CCCC 

Present 

CCCC 

Ping Zhu 

SSSS 

Present 

SSSS 

Ping Zhu 

SCSC 

Present 

SCSC 

Ping Zhu 

SFSF 

Present 

SFSF 

Ping Zhu 

0.11 

10 

Parabola 1 2.12E-3  3.33E-3  2.99E-3  3.13E-3  

Parabola 2 2.11E-3  3.25E-3  2.92E-3  3.05E-3  

Linear 2.10E-3 2.11E-3 3.18E-3 3.18E-3 2.86E-3 2.87E-3 2.98E-3 2.91E-3 

Parabola 3 2.25E-3  3.89E-3  3.43E-3  3.72E-3  

Parabola 4 2.27E-3  3.96E-3  3.49E-3  3.80E-3  

20 

Parabola 1 1.20E-2  2.95E-2  2.81E-2  2.80E-2  

Parabola 2 1.17E-2  2.83E-2  2.70E-2  2.68E-2  

Linear 1.15E-2 1.15E-2 2.72E-2 2.70E-2 2.61E-2 2.59E-2 2.57E-2 2.48E-2 

Parabola 3 1.38E-2  3.85E-2  3.58E-2  3.70E-2  

Parabola 4 1.41E-2  3.96E-2  3.68E-2  3.82E-2  

50 

Parabola 1 0.209  0.889  0.865  0.854  

Parabola 2 0.199  0.839  0.820  0.806  

Linear 0.191 0.189 0.797 0.790 0.781 0.773 0.766 0.734 

Parabola 3 0.278  1.239  1.174  1.199  

Parabola 4 0.287  1.282  1.211  1.243  

0.14 

10 

Parabola 1 2.02E-3  3.00E-3  2.71E-3  2.80E-3  

Parabola 2 2.01E-3  2.94E-3  2.66E-3  2.74E-3  

Linear 1.99E-3 1.98E-3 2.88E-3 2.88E-3 2.61E-3 2.58E-3 2.68E-3 2.59E-3 

Parabola 3 2.11E-3  3.44E-3  3.07E-3  3.25E-3  

Parabola 4 2.13E-3  3.50E-3  3.12E-3  3.31E-3  

20 

Parabola 1 1.09E-2  2.47E-2  2.39E-2  2.34E-2  

Parabola 2 1.07E-2  2.37E-2  2.30E-2  2.24E-2  

Linear 1.05E-2 1.04E-2 2.29E-2 2.26E-2 2.22E-2 2.18E-2 2.16E-2 2.08E-2 

Parabola 3 1.23E-2  3.19E-2  3.02E-2  3.04E-2  

Parabola 4 1.25E-2  3.28E-2  3.10E-2  3.13E-2  

50 

Parabola 1 0.173  0.707  0.698  0.680  

Parabola 2 0.166  0.668  0.661  0.642  

Linear 0.159 0.156 0.635 0.627 0.630 0.621 0.610 0.585 

Parabola 3 0.227  0.988  0.954  0.952  

Parabola 4 0.234  1.023  0.985  0.986  

0.17 

10 

Parabola 1 1.36E-3  2.16E-3  1.93E-3  2.03E-3  

Parabola 2 1.36E-3  2.11E-3  1.89E-3  1.98E-3  

Linear 1.35E-3 1.32E-3 2.07E-3 2.01E-3 1.85E-3 1.80E-3 1.94E-3 1.84E-3 

Parabola 3 1.43E-3  2.50E-3  2.21E-3  2.39E-3  

Parabola 4 1.44E-3  2.55E-3  2.24E-3  2.45E-3  

20 

Parabola 1 7.77E-3  1.93E-2  1.83E-2  1.83E-2  

Parabola 2 7.62E-3  1.85E-2  1.76E-2  1.75E-2  

Linear 7.48E-3 7.29E-3 1.78E-2 1.74E-2 1.69E-2 1.65E-2 1.68E-2 1.60E-2 

Parabola 3 8.90E-3  2.51E-2  2.33E-2  2.44E-2  

Parabola 4 9.06E-3  2.58E-2  2.39E-2  2.49E-2  

50 

Parabola 1 0.136  0.583  0.564  0.559  

Parabola 2 0.130  0.550  0.535  0.527  

Linear 0.125 0.122 0.523 0.513 0.510 0.499 0.500 0.476 

Parabola 3 0.182  0.813  0.768  0.786  

Parabola 4 0.187  0.841  0.792  0.815  
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Table 2. Effect of distribution pattern of carbon nanotubes and volume fraction 𝑉𝐶𝑁𝑇
∗  and b/h ratio on the first six non-dimensional 

natural frequencies 𝜔 = 𝜔(
𝑎2

ℎ
) 𝜌𝑚/𝐸𝑚  of CNTRC square fully clamped (CCCC) plates. 

 

 

𝑽𝑪𝑵𝑻
∗  b/h Mode number Parabola 1 Parabola 2 

Linear 

Present 

Linear 

Ping Zhu 
Parabola 3 Parabola 4 

0.11 

10 

1 17.98 18.05 18.13 18.08 17.52 17.44 

2 23.34 23.42 23.51 23.61 22.87 22.80 

3 33.56 33.66 33.77 34.34 33.08 33.02 

4 34.25 34.37 34.51 34.47 33.47 33.33 

5 37.49 37.51 37.49 37.45 36.78 36.65 

6 37.53 37.65 37.79 37.79 37.43 37.43 

20 

1 29.89 30.19 30.48 30.42 27.99 27.75 

2 34.50 34.79 35.07 35.04 32.75 32.54 

3 45.88 46.18 46.47 46.48 44.27 44.09 

4 61.34 61.75 62.17 61.98 58.62 58.23 

5 63.91 64.32 64.73 64.56 61.15 60.93 

6 64.43 64.75 65.07 65.17 62.83 62.67 

50 

1 44.12 45.12 46.03 46.17 38.57 38.00 

2 47.90 48.85 49.71 49.93 42.73 42.22 

3 58.25 59.11 59.91 60.23 53.72 53.28 

4 77.58 78.39 79.16 79.53 73.55 73.18 

5 106.65 107.48 108.28 108.65 95.87 94.63 

6 107.14 109.06 110.81 110.92 98.00 96.80 

0.14 

10 

1 18.35 18.41 18.47 18.59 17.98 17.91 

2 23.78 23.87 23.96 24.24 23.33 23.26 

3 34.15 34.27 34.40 35.22 33.61 33.55 

4 34.92 35.00 35.11 35.41 34.32 34.20 

5 38.04 38.08 38.13 38.17 37.60 37.48 

6 38.22 38.32 38.45 38.79 37.95 37.96 

20 

1 31.16 31.42 31.67 31.86 29.46 29.23 

2 35.73 36.01 36.28 36.49 34.07 33.87 

3 47.15 47.47 47.79 48.09 45.46 45.27 

4 63.27 63.61 63.97 64.33 60.96 60.60 

5 65.81 66.16 66.40 66.91 63.54 63.20 

6 65.89 66.28 66.68 67.15 64.03 63.85 

50 

1 48.10 49.13 50.07 50.40 42.27 41.67 

2 51.67 52.67 53.58 54.03 46.14 45.58 

3 61.68 62.64 63.52 64.11 56.64 56.15 

4 80.79 81.75 82.65 83.39 76.07 75.63 

5 109.93 110.97 111.98 112.90 103.72 102.47 

6 114.83 116.69 118.38 119.13 105.09 104.43 

0.17 

10 

1 22.28 22.35 22.43 22.75 21.82 21.74 

2 29.10 29.22 29.36 29.88 28.47 28.39 

3 41.98 42.15 42.36 43.29 41.19 41.11 

4 42.37 42.45 42.58 43.56 41.73 41.58 

5 46.57 46.68 46.84 47.07 45.84 45.70 

6 46.83 46.90 47.00 47.61 46.66 46.67 

20 

1 36.93 37.27 37.59 38.06 34.70 34.41 

2 42.86 43.23 43.60 44.11 40.64 40.38 

3 57.37 57.83 58.31 58.93 55.00 54.75 

4 75.77 76.19 76.63 77.64 72.88 72.44 

5 79.10 79.54 80.00 81.04 76.22 75.79 

6 80.83 81.42 82.04 82.93 78.11 77.86 

50 

1 51.98 55.53 56.64 57.25 47.46 46.76 

2 59.19 60.39 61.49 62.24 52.69 52.04 

3 72.51 73.70 74.82 75.75 66.43 65.86 

4 97.21 98.49 99.72 100.85 91.18 90.65 

5 131.94 134.24 136.33 137.91 118.27 116.77 

6 134.12 135.60 137.08 138.49 120.95 119.48 
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Fig. 4. Six first natural mode shapes of a CNTRC plate while b/h=0.17 (Parabola 4) , (CCCC) 

 

 

 
 

Fig. 5. Variations of central deflection of plate with different distribution pattens under CCCC boundary conditions for: 

(a) b/h=10, (b) b/h=20, (c) b/h=50 
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Fig. 6. Variations of central deflection of plate with different distribution pattens under SSSS boundary conditions for: 

(a) b/h=10, (b) b/h=20, (c) b/h=50 

 

 

 
 

Fig. 7. Variations of central deflection of  plate with different distribution pattens under SCSC boundary conditions for: 

(a) b/h=10, (b) b/h=20, (c) b/h=50 

 

 

 
 

Fig. 8. Variations of central deflection of plate with different distribution pattens under SFSF boundary conditions for: 
(a) b/h=10, (b) b/h=20, (c) b/h=50 
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Fig. 9. Variations of (a) first and (b) second natural frequencies of CNTRC plate with different distribution patterns 

under CCCC boundary conditions while 𝑉𝐶𝑁𝑇
∗ =0.11 

 

 

 
 

Fig. 10. Variations of (a) first and (b) second natural frequencies of CNTRC plate with different distribution patterns 

under CCCC boundary conditions while 𝑉𝐶𝑁𝑇
∗ =0.14 

 

 

 
 

Fig. 11. Variations of (a) first and (b) second natural frequencies of CNTRC plate with different distribution patterns under CCCC boundary 

conditions while 𝑉𝐶𝑁𝑇
∗ =0.17
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CONCLUSIONS 
 

 In this paper we investigated the effect of 

carbon nanotubes distribution patterns and the 

geometric parameters of a CNTRC plate under 

different boundary conditions on static and modal 

responses of these plates. Numerical simulations 

showed that the linear distribution pattern leads to 

the minimum central deflection and the maximum 

natural frequencies. Further, the effect of upward 

deviations in distribution pattern of carbon 

nanotubes which is equal to compressing carbon 

nanotubes are remarkably more than downward 

deviations effects which is equal to dispersion of 

carbon nanotubes in the isotropic matrix. 
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