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Study of the flexural sensitivity and resonant frequency of 

an inclined AFM cantilever with sidewall probe 
 

 

 

ABSTRACT 

 The resonant frequency and sensitivity of an atomic force 

microscope (AFM) cantilever with assembled cantilever probe (ACP) 

have been analyzed and a closed-form expression for the sensitivity of 

vibration modes has been obtained. The proposed ACP comprises an 

inclined cantilever and extension, and a tip located at the free end of the 

extension, which makes the AFM capable of topography at sidewalls of 

microstructures. Because the extension is not exactly located at one end 

of the cantilever, the cantilever is modeled as two beams. In this study, 

the effects of the interaction stiffness and damping, and also some 

geometrical parameters of the cantilever on the resonant frequencies and 

sensitivities are investigated. Afterwards, the influence of the interaction 

stiffness and damping, and the geometrical parameters such as the angles 

of the cantilever and extension, the connection position of the extension 

and the ratio of the extension length to the cantilever length on the 

sensitivity and resonant frequency are investigated. The results show that 

the greatest flexural modal sensitivity occurs at a small contact stiffness 

of the system, when the connection position and damping are also small. 

The results also indicate that at low values of contact stiffness, an 

increase in the cantilever slope or a decrease in the angle between the 

cantilever and extension can rise the resonant frequency while reduces 

the sensitivity. 

Keywords: Atomic force microscope; Assembled cantilever probe; 

Inclined cantilever; Resonant frequency; Sensitivity. 
 

 

INTRODUCTION 
 The resonant frequency and sensitivity of an atomic force 

microscope (AFM) cantilever with assembled cantilever probe (ACP) 

have been analyzed and a closed-form expression for the sensitivity of 

vibration modes has been obtained. The proposed ACP comprises an 

inclined cantilever and extension, and a tip located at the free end of 

the extension, which makes the AFM capable of topography at 

sidewalls of microstructures. Because the extension is not exactly 

located at one end of the cantilever, the cantilever is modeled as two 

beams. In this study, the effects of the interaction stiffness and 

damping, and also some geometrical parameters of the cantilever on 

the resonant frequencies and sensitivities are investigated.  

Contents list available at IJND 

International Journal of Nano Dimension 

Journal homepage: www.IJND.ir 

 

Received 06 November 2014 

Received in revised form 

11 February 2015 

Accepted 05 March 2015 

 

* Corresponding author: 
Mohammad Abbasi 
School of Mechanical Engineering, 
Shahrood Branch, Islamic Azad 
University, Shahrood, Iran. 
Tel +98 9151250720 
Fax +98 2332394530 
Email m.abbasi28@yahoo.com 

M.  Abbasi* 

 
School of Mechanical 

Engineering, Shahrood Branch, 
Islamic Azad University, 
Shahrood, Iran. 



Int. J. Nano Dimens. 6 (4): 351-362, Autumn 2015.                                                                                                                            Abbasi 

 

 

 
352 

 
Submit your manuscript to www.ijnd.ir 

 

 Afterwards, the influence of the interaction 

stiffness and damping, and the geometrical 

parameters such as the angles of the cantilever and 

extension, the connection position of the extension 

and the ratio of the extension length to the 

cantilever length on the sensitivity and resonant 

frequency are investigated. The results show that 

the greatest flexural modal sensitivity occurs at a 

small contact stiffness of the system, when the 

connection position and damping are also small. 

The results also indicate that at low values of 

contact stiffness, an increase in the cantilever slope 

or a decrease in the angle between the cantilever 

and extension can rise the resonant frequency while 

reduces the sensitivity. 

 The atomic force microscope (AFM) is not 

only a powerful tool for imaging surface 

topography, but thanks to recent technical 

advances, it has proven to be the most frequently 

used scanning probe method for the 

characterization, manipulation and modification of 

a variety of materials such as DNA, antibodies, 

polymers, and silicon surfaces [1-4]. 

 When a tip scans across a sample surface, it 

induces a dynamic interaction force between the tip 

and the surface [5]. The imaging rate and contrast 

of topographic images are notably influenced by the 

resonant frequency and the sensitivity of AFMs, 

respectively [6]. Dynamic responses of the AFM 

cantilever have been investigated by many 

researches [7-9]. 

 In practice, it is very hard to keep the 

cantilever in parallel with the sample surface, 

causing an angle between the cantilever and the 

sample surface [10]. Taking into account the angle 

between the cantilever and the surface, Abbasi and 

Karami Mohammadi [11] found that the effect of 

the cantilever slope in vibration behavior of an 

AFM cantilever is considerable. 

 The normal and lateral interactive forces 

between the cantilever tip and the sample surface 

can be modeled by a set combination of a spring 

parallel to a dashpot in the normal direction and a 

similar combination in the lateral direction [12]. 

The interactive damping of a cantilever beam at the 

boundary can affect the motion of the beam. Chang 

[12] analyzed the effect of interactive damping on 

the sensitivity of flexural and torsional vibration 

modes of an atomic force microscope (AFM) 

rectangular cantilever. Mahdavi et al. [13] analyzed 

the flexural vibration modes of the AFM 

rectangular cantilever, taking into account the 

effects of RI and SD of the beam and mass and 

rotary inertia of the tip. Considering the coupling of 

the lateral and torsional vibrations of an AFM 

cantilever, Lee and Chang [14] studied the 

influence of contact stiffness and also the ratio of 

the tip length to the cantilever length on the 

resonant frequency and coupled lateral bending-

torsional sensitivity of AFM rectangular cantilever. 

Recently, the dynamic behavior of an inclined non-

uniform cantilever vibrating in fluid is studied by 

Lin [15]. Korayem et al. [16] investigated the effect 

of capillary force on the dynamics of tapping mode 

AFM when it is operated in air. 

 Conventional AFMs consist of 

microcantilevers with sharp conical or pyramidal 

tips located at their free ends that play an important 

role in nanoscale surface measurement [17]. 

Unfortunately, their probe tips never come in close 

proximity to sidewalls, no matter how sharp and 

thin the tips are. Therefore, nanoscale surface 

measurements at sidewalls are urgently demanded. 

In order to overcome the limitations of 

conventional AFMs, Dai et al. [18] proposed 

assembled cantilever probes (ACPs) for the direct 

and non-destructive sidewall measurement of nano- 

and microstructures. Chang et al. [19] analyzed the 

resonant frequency and flexural sensitivity of a 

form of AFM ACP proposed by Dai et al. [18], 

which consists of a horizontal cantilever and a 

vertical extension located at its free end. But for 

convenience, they did not take into account the 

effects of angle, damping and contact position of 

extension. Abbasi and Karami Mohammadi [20] 

also investigated the resonant frequency and 

sensitivity of the flexural modes of this ACP 

utilizing the nonlocal beam theory. Kahrobaiyan et 

al. [21] investigated the resonant frequencies and 

flexural sensitivities of another form of ACPs 

proposed by Dai et al.[22]. Abbasi and Afkhami 

[17] analyzed the resonant frequency and 

sensitivity of a caliper formed with assembled 

cantilever probes based on the modified strain 

gradient theory. 

 In this paper, the sensitivity and resonant 

frequency of the flexural vibration modes of a more 

comprehensive model of an assembled cantilever 

probe proposed by Die et al. [18], consisting of an 

inclined AFM cantilever and an extension, are 

analyzed. Because the size of AFM cantilever and 

extension are so small, in practice, it is very hard to 
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control the exact position of the extension and the 

angles of the cantilever and the extension. 

Therefore, we assume that the extension is not 

vertical and is not located exactly at the free end of 

the cantilever and also the cantilever has a small 

inclination. Finally, the influence of the interaction 

stiffness and damping, and the geometrical 

parameters such as the angles of the cantilever and 

extension, the connection position of the extension 

and the ratio of the extension length to the 

cantilever length on the sensitivity and resonant 

frequency are assessed. 

 

 

EXPERIMENTAL 

 
Computational Method 

 The proposed kind of AFM ACP developed 

in the present study, comprises an inclined 

cantilever and an extension near the free end, and a 

tip located at the free end of the extension is 

capable of probing in a direction perpendicular to 

sidewall. The geometrical parameters and 

configuration of this ACP are depicted in Figure 1. 

Both the cantilever and the extension have a 

uniform cross section thickness b, width a, which 

length is L and H, respectively, and the small length 

tip is h. The angle between the cantilever and the 

sample surface is and between the cantilever and 

extension is 𝛼. 𝐿1 and 𝐿2 are the lengths of the 

cantilever on the left and right sides of the 

extension, respectively. 𝑥 is the coordinate along 

the cantilever and 𝑤(𝑥, 𝑡) is the cantilever vertical 

displacement along the y axis, as shown in the 

Figure 1. Considering the ratio of the extension 

rigidity to cantilever rigidity, the deflection of the 

extension in comparison with the cantilever 

deflection can be neglected, so it can be assumed 

that the extension is rigid. The coordinate system of 

p and q is parallel and perpendicular to the plane, 

respectively. The cantilever is clamped at 𝑥 = −𝐿1, 

while at x = 0 has an extension and is free at 𝑥 =
𝐿2. Moreover, the cantilever of ACP experiences 

flexural vibrations during contact with the sample. 

The ACP interacts with the sample by a normal 

spring 𝐾𝑛  a normal dashpot 𝐶𝑛 , a lateral spring 𝐾𝑙  
and a lateral dashpot 𝐶𝑙. 
 

 

 

 
 

Fig. 1. Schematic diagram of an AFM cantilever microassembled with 

a vertical extension at the free end and a tip located at the free end of 
the vertical extension. 

 

 

 In this work, the inclined cantilever and 

extension are considered as an elastic beam. The 

inclined cantilever of ACP will vibrate flexurally. 

The linear differential equation of motion for the 

free vibration of the horizontal cantilever of ACP is 

as follows 

 

𝐸𝐼
𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 = 0    −𝐿1 ≤ 𝑥 ≤ 0   ,  0 ≤ 𝑥 ≤ 𝐿2  

 

(1) 

 

 where A and I are the area and the area 

moment of inertia of the cross section, E is the 

modulus of elasticity and 𝜌 is the volume density. 

The boundary conditions are derived as follows 

 

𝑤 −𝐿1, 𝑡 =
𝜕𝑤 (−𝐿1 ,𝑡)

𝜕𝑥
= 0                             (2) 

 

𝐸𝐼
𝜕2𝑤 𝐿2 ,𝑡 

𝜕𝑥2 = 𝐸𝐼
𝜕3𝑤 𝐿2 ,𝑡 

𝜕𝑥3 = 0                       (3) 

 

the continuity conditions are written as follows 

 

𝑤 0−, 𝑡 = 𝑤 0+, 𝑡  ,  
𝜕𝑤 0−,𝑡 

𝜕𝑥
=

𝜕𝑤  0+,𝑡 

𝜕𝑥
        (4) 

 

𝐸𝐼
𝜕3𝑤(0−, 𝑡)

𝜕𝑥3
− 𝐸𝐼

𝜕3𝑤(0+, 𝑡)

𝜕𝑥3
= 𝐹𝑞𝑐𝑜𝑠𝜃 + 𝐹𝑝𝑠𝑖𝑛𝜃 + 𝑀𝑒

𝜕2𝑤𝐺

𝜕𝑡2
 

 

(5) 
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𝐸𝐼
𝜕2𝑤 0−, 𝑡 

𝜕𝑥2
− 𝐸𝐼

𝜕2𝑤 0+, 𝑡 

𝜕𝑥2
= 

−𝐸𝐼
𝜕3𝑤(0+,𝑡)

𝜕𝑥3 𝑏 +  𝐹𝑞𝑐𝑜𝑠𝜃 + 𝐹𝑝𝑠𝑖𝑛𝜃 𝜅1 +  𝐹𝑞𝑠𝑖𝑛𝜃 − 𝐹𝑝𝑐𝑜𝑠𝜃 𝜅2 +
1

2
𝑀𝑒

𝜕2𝑤𝐺

𝜕𝑡2 𝜅3 − 𝐽𝑒
𝜕3𝑤

𝜕𝑥𝜕 𝑡2      

 

(6) 

 

where 

 
 
 

 
 
𝜅1 = 𝐻𝑐𝑜𝑠𝛼 + 𝑕𝑠𝑖𝑛𝛼                           

𝜅2 =
𝐻

2
𝑠𝑖𝑛𝛼 − 𝑕𝑐𝑜𝑠𝛼                           

𝜅3 = 𝐻𝑐𝑜𝑠𝛼 − 𝑑                                   

 𝑤𝐺 = 𝑤 0−, 𝑡 −
𝐻

2
cos 𝛼 

𝜕𝑤 (0−,𝑡)

𝜕𝑥
    

                            (7) 

 

also 𝐽𝑒  in Eq. (6) is equal to 
1

3
𝑀𝑒𝐻

2 which is the mass moment of inertia of the extension, 

and  𝑀𝑒  is the mass of the extension [23].𝑤𝐺  is the extension center of gravity displacement along 

the y axis. 𝐹𝑝   and 𝐹𝑞  in Eq. (5) and Eq. (6) are interaction forces between the tip and the sample in 

the p and q directions, respectively and are defined as 

 

 
𝐹𝑝 = 𝑘𝑛𝛿𝑝 + 𝐶𝑛

𝑑𝛿𝑝

𝑑𝑡

𝐹𝑞 = 𝑘𝐿𝛿𝑞 + 𝐶𝐿
𝑑𝛿𝑞

𝑑𝑡

                                                      (8)  

 

and 𝛿𝑝  and 𝛿𝑞  which are displacements of tip end normal and parallel to the sidewall 

surface will be as follows: 

 

 
𝛿𝑝 = 𝑤 0, 𝑡 𝑠𝑖𝑛 𝜃 + 𝐻𝑠𝑖𝑛 𝛼 − 𝜃 

𝜕𝑤  0,𝑡 

𝜕𝑥
− 𝑕𝑐𝑜𝑠(𝛼 − 𝜃)

𝜕𝑤 0,𝑡 

𝜕𝑥

𝛿𝑞 = 𝑤 0, 𝑡 𝑐𝑜𝑠 𝜃 + 𝐻𝑐𝑜𝑠 𝛼 − 𝜃 
𝜕𝑤  0,𝑡 

𝜕𝑥
− 𝑕𝑠𝑖𝑛(𝛼 − 𝜃)

𝜕𝑤  0,𝑡 

𝜕𝑥

                         (9)  

 

Because the extension is not exactly located at the end of the cantilever, the cantilever is 

modelled as two beams. Thus, by assuming a solution of the form 𝑦 𝑥, 𝑡 = 𝑌(𝑥)𝑒𝑖𝜔𝑡   and 

𝑧 𝑥, 𝑡 = 𝑍(𝑥)𝑒𝑖𝜔𝑡   for the left and right sides of the extension, respectively, and substituting the 

solution into Eq. 1, two ordinary differential equations for the mode functions are derived as 

follows 

 
𝑑4𝑌 𝑥 

𝑑𝑥4 − 𝛽4𝑌 𝑥 = 0      −𝐿1 ≤ 𝑥 ≤ 0            (10) 
  

𝑑4𝑍(𝑥)

𝑑𝑥4 − 𝛽4𝑍 𝑥 = 0       0 ≤ 𝑥 ≤ 𝐿2              . 

 

where 𝛽4 =
𝜌𝐴

𝐸𝐼
𝜔2 is the flexural wave number and 𝜔 is the angular frequency. The 

following boundary and continuity conditions are thus obtained 

 

𝑌 −𝐿1 =
𝑑𝑌(−𝐿1)

𝑑𝑥
= 0                   (11)  

𝑑2𝑍(𝐿2)

𝑑𝑥2 =
𝑑3𝑍(𝐿2)

𝑑𝑥3 = 0                     (12)  
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𝑌(0) = 𝑍(0)                                                                                 (13) 
 

 

𝑑𝑌(0)

𝑑𝑥
=

𝑍(0)

𝑑𝑥
                                                                                   (14) 

 
 

𝐿3 𝑑3𝑌(0)

𝑑𝑥3 + 𝑃1
𝑑𝑌 0 

𝑑𝑥
+ 𝑃2𝑌 0 = 𝐿3 𝑑3𝑍(0)

𝑑𝑥3                                     (15) 

 
 

𝐿3 𝑑2𝑌 0 

𝑑𝑥2 + 𝑞1
𝑑𝑌 0 

𝑑𝑥
+ 𝑞2𝑌 0 = 𝐿3 𝑑2𝑍 0 

𝑑𝑥2 − 𝐿3𝑑
𝑑3𝑍 0 

𝑑𝑥3                (16) 
 

where  

 
  
 

  
 𝑃1 = −

1

2
𝑀𝑓𝛾

4𝐻𝑐𝑜𝑠𝛼 + 𝑟2                                       

𝑃2 = 𝑀𝑓𝛾
4 − 𝑟1                                                            

𝑞1 = 𝑟2𝜅1 + 𝑟4𝜅2 −
1

4
𝑀𝑓𝛾

4𝜅3𝐻𝑐𝑜𝑠𝛼 − 𝐽𝑓𝐻
2𝛾4  

𝑞2 =
1

2
𝑀𝑓𝛾

4𝜅3 − 𝑟1𝜅1 − 𝑟3𝜅2                                 
                                 

                            (17) 

 

 

 
 
 

 
 𝑟1 = 𝜂𝐿 𝑐𝑜𝑠

2𝜃 +  𝜂𝑛 𝑠𝑖𝑛
2𝜃         

𝑟2 = −𝜂𝑛 𝑢2𝑠𝑖𝑛𝜃 +  𝜂𝐿 𝑢1𝑐𝑜𝑠𝜃 

𝑟3 =
1

2
𝑠𝑖𝑛2𝜃 𝜂𝐿 − 𝜂𝑛               

𝑟4 = 𝜂𝐿 𝑢1𝑠𝑖𝑛𝜃 + 𝜂𝑛 𝑢2𝑐𝑜𝑠𝜃    

                                                         (18) 

 

 

 
𝑢1 = 𝐻𝑐𝑜𝑠 𝛼 − 𝜃 + 𝑕𝑠𝑖𝑛(𝛼 − 𝜃)

𝑢2 = 𝐻𝑠𝑖𝑛 𝛼 − 𝜃 − 𝑕𝑐𝑜𝑠(𝛼 − 𝜃)
                                                   (19) 

 

 

In the above equations, 𝛾 = 𝛽𝐿  is the normalized wave number. 𝜂𝑛  and 𝜂𝐿  are functions 

containing the normal and lateral contact stiffness and interaction damping, respectively: 

 

𝜂𝑛 = 𝑘𝑛 + 𝑖𝜔𝐶𝑛       ,     𝜂𝐿 = 𝑘𝐿 + 𝑖𝜔𝐶𝐿                                            (20)  

 

also the dimensionless variables used in the Eq. (17)-(19) are defined as 

𝜂 𝐿 =
𝜂𝐿

𝑘 𝑐
= 𝛽𝐿 + 𝑖𝜁𝐿         ,      𝜂 𝑛 =

𝜂𝑛

𝑘 𝑐
= 𝛽𝑛 + 𝑖𝜁𝑛                                  . 

𝑘 𝑐 =
𝐸𝐼

𝐿3      ,    𝛽𝐿 =
𝑘𝐿

𝑘 𝑐
     ,   𝛽𝑛 =

𝑘𝑛

𝑘 𝑐
     ,   𝜁𝐿 =

𝜔𝐶𝐿

𝑘𝐶
                           (21) 

𝜁𝑛 =
𝜔𝐶𝑛

𝑘𝐶
   ,    𝑀𝑓 =

𝑀𝑒

𝜌𝐴𝐿
   ,   𝐽𝑓 =

𝐽𝑒

𝜌𝐴𝐿𝐻2                                                   . 

 

 

 

A general solution of Eq. (10) can be expressed in the form 

 

𝑌 𝑥 = 𝐶1𝑠𝑖𝑛𝛽𝑥 + 𝐶2𝑠𝑖𝑛𝑕𝛽𝑥 + 𝐶3𝑐𝑜𝑠𝛽𝑥 + 𝐶4𝑐𝑜𝑠𝑕𝛽𝑥               . 

𝑍 𝑥 = 𝐷1𝑠𝑖𝑛𝛽𝑥 + 𝐷2𝑠𝑖𝑛𝑕𝛽𝑥 + 𝐷3𝑐𝑜𝑠𝛽𝑥 + 𝐷4𝑐𝑜𝑠𝑕𝛽𝑥        (22) 
 

 

substituting the boundary conditions of Eqs. (11) and (12) into Eq. (14), the general 

solution can be simplified 



Int. J. Nano Dimens. 6 (4): 351-362, Autumn 2015.                                                                                                                            Abbasi 

 

 

 
356 

 
Submit your manuscript to www.ijnd.ir 

 

𝑌 𝑥 = 𝐶1 𝑠𝑖𝑛𝛽 𝑥 + 𝐿1 − 𝑠𝑖𝑛𝑕𝛽 𝑥 + 𝐿1  + 𝐶2 𝑐𝑜𝑠𝛽 𝑥 + 𝐿1 − 𝑐𝑜𝑠𝑕𝛽 𝑥 + 𝐿1       
(23) 

𝑍 𝑥 = 𝐷1 𝑠𝑖𝑛𝛽 𝑥 − 𝐿2 + 𝑠𝑖𝑛𝑕𝛽 𝑥 − 𝐿2  + 𝐷2 𝑐𝑜𝑠𝛽 𝑥 − 𝐿2 + 𝑐𝑜𝑠𝑕𝛽 𝑥 − 𝐿2    

 

after lengthy manipulation, from continuity Eqs. (13-16) 

Δ11𝐷1 + Δ12𝐷2 = 0 
(24) 

Δ21𝐷1 + Δ22𝐷2 = 0 

 

Where 

 

Δ11 = 𝑕1𝐹1 + 𝑕2𝐺1 + 𝑕3  Δ12 = 𝑕1𝐹2 + 𝑕2𝐺2 + 𝑕4 
(25) 

Δ21 = 𝑘1𝐹1 + 𝑘2𝐺1 + 𝑘3 Δ22 = 𝑘1𝐹2 + 𝑘2𝐺2 + 𝑘4 

 

And 

 

𝐹1 = − 𝑐𝑜𝑠𝛾 − 𝑠𝑖𝑛
𝛾𝐶𝑝

1+𝐶𝑝
𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
+ 𝑐𝑜𝑠𝑕𝛾 − 𝑐𝑜𝑠𝑕

𝛾𝐶𝑝

1+𝐶𝑝
𝑐𝑜𝑠

𝛾

1+𝐶𝑝
+ 𝑐𝑜𝑠

𝛾𝐶𝑝

1+𝐶𝑝
𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
−

𝑠𝑖𝑛𝑕𝛾𝐶𝑝1+𝐶𝑝𝑠𝑖𝑛𝛾1+𝐶𝑝/21+𝑐𝑜𝑠𝛾𝐶𝑝1+𝐶𝑝𝑐𝑜𝑠𝑕𝛾𝐶𝑝1+𝐶𝑝        

 

𝐹2 = − 𝑠𝑖𝑛𝛾 − 𝑠𝑖𝑛
𝛾𝐶𝑝

1+𝐶𝑝
𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
+ 𝑠𝑖𝑛𝑕𝛾 + 𝑐𝑜𝑠𝑕

𝛾𝐶𝑝

1+𝐶𝑝
𝑠𝑖𝑛

𝛾

1+𝐶𝑝
+ 𝑐𝑜𝑠

𝛾𝐶𝑝

1+𝐶𝑝
𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
−

𝑠𝑖𝑛𝑕𝛾𝐶𝑝1+𝐶𝑝𝑐𝑜𝑠𝛾1+𝐶𝑝/21+𝑐𝑜𝑠𝛾𝐶𝑝1+𝐶𝑝𝑐𝑜𝑠𝑕𝛾𝐶𝑝1+𝐶𝑝   

 

𝐺1 =  𝑠𝑖𝑛𝛾 + 𝑐𝑜𝑠
𝛾

1+𝐶𝑝
𝑠𝑖𝑛𝑕

𝛾𝐶𝑝

1+𝐶𝑝
− 𝑠𝑖𝑛𝑕𝛾 − 𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
𝑠𝑖𝑛

𝛾𝐶𝑝

1+𝐶𝑝
− 𝑐𝑜𝑠

𝛾𝐶𝑝

1+𝐶𝑝
𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
+

𝑐𝑜𝑠𝑕𝛾𝐶𝑝1+𝐶𝑝𝑠𝑖𝑛𝛾1+𝐶𝑝/21+𝑐𝑜𝑠𝛾𝐶𝑝1+𝐶𝑝𝑐𝑜𝑠𝑕𝛾𝐶𝑝1+𝐶𝑝   

𝐺2 =  𝑐𝑜𝑠𝛾 − 𝑠𝑖𝑛
𝛾

1+𝐶𝑝
𝑠𝑖𝑛𝑕

𝛾𝐶𝑝

1+𝐶𝑝
− 𝑐𝑜𝑠𝑕𝛾 − 𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
𝑠𝑖𝑛

𝛾𝐶𝑝

1+𝐶𝑝
− 𝑐𝑜𝑠

𝛾𝐶𝑝

1+𝐶𝑝
𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
+

𝑐𝑜𝑠𝑕𝛾𝐶𝑝1+𝐶𝑝𝑐𝑜𝑠𝛾1+𝐶𝑝/21+𝑐𝑜𝑠𝛾𝐶𝑝1+𝐶𝑝𝑐𝑜𝑠𝑕𝛾𝐶𝑝1+𝐶𝑝   

𝑕1 = −𝛾3  𝑐𝑜𝑠
𝛾

1+𝐶𝑝
+ 𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
 +

𝑃1𝛾

𝐿
 𝑐𝑜𝑠

𝛾

1+𝐶𝑝
− 𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
 + 𝑃2 ×  𝑠𝑖𝑛

𝛾

1+𝐶𝑝
− 𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
     

𝑕2 = 𝛾3  𝑠𝑖𝑛
𝛾

1+𝐶𝑝
− 𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
 −

𝑃1𝛾

𝐿
 𝑠𝑖𝑛

𝛾

1+𝐶𝑝
+ 𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
 + 𝑃2 ×  𝑐𝑜𝑠

𝛾

1+𝐶𝑝
− 𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
    

𝑕3 = 𝛾3  𝑐𝑜𝑠
𝛾𝐶𝑝

1+𝐶𝑝
− 𝑐𝑜𝑠𝑕

𝛾𝐶𝑝

1+𝐶𝑝
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𝑕4 = 𝛾3  𝑠𝑖𝑛
𝛾𝐶𝑝

1+𝐶𝑝
+ 𝑠𝑖𝑛𝑕

𝛾𝐶𝑝

1+𝐶𝑝
   

𝑘1 = −
𝑞1𝛾

2

𝐿2  𝑠𝑖𝑛
𝛾

1+𝐶𝑝
+ 𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
 +

𝑞2𝛾

𝐿
 𝑐𝑜𝑠

𝛾

1+𝐶𝑝
− 𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
   

𝑘2 = −
𝑞1𝛾

2

𝐿2  𝑐𝑜𝑠
𝛾

1+𝐶𝑝
+ 𝑐𝑜𝑠𝑕

𝛾

1+𝐶𝑝
 −

𝑞2𝛾

𝐿
 𝑠𝑖𝑛

𝛾

1+𝐶𝑝
+ 𝑠𝑖𝑛𝑕

𝛾

1+𝐶𝑝
   

𝑘3 = 𝛾3𝑑  −𝑐𝑜𝑠
𝛾𝐶𝑝

1+𝐶𝑝
+ 𝑐𝑜𝑠𝑕

𝛾𝐶𝑝

1+𝐶𝑝
 + 𝛾2𝐿  −𝑠𝑖𝑛

𝛾𝐶𝑝

1+𝐶𝑝
+ 𝑠𝑖𝑛𝑕

𝛾𝐶𝑝

1+𝐶𝑝
   

𝑘4 = −𝛾3𝑑  𝑠𝑖𝑛
𝛾𝐶𝑝

1+𝐶𝑝
+ 𝑠𝑖𝑛𝑕

𝛾𝐶𝑝

1+𝐶𝑝
 + 𝛾2𝐿  𝑐𝑜𝑠

𝛾𝐶𝑝

1+𝐶𝑝
− 𝑐𝑜𝑠𝑕

𝛾𝐶𝑝

1+𝐶𝑝
                            (26) 

 

 

 

 in the Eq. (26), 𝐶𝑝 =
𝐿2

𝐿1
 is the connection 

position of the extension.  

Regarding the above equations, the characteristic 

equation of the system is given by 

 

𝐶 𝛾, 𝛽𝑙 = Δ11Δ22 − Δ12Δ21              (27) 

 

 Therefore, the relation between frequency 

and wave number is given  

 

𝑓 =
𝛾2

2𝜋𝐿2  
𝐸𝐼

𝜌𝐴
                                      (28) 

 

 and finally, a dimensionless form of the 

flexural sensitivity is given by [24] 

 

𝑆𝑛 =
𝑑𝑓/𝑑𝛽𝐿

 1/2𝜋𝐿2  𝐸𝐼/𝜌𝐴
                           (29) 

 

 For convenience, relative shifts of the 

frequency and sensitivity are defined and used in 

the analysis as follows 

 

𝐸𝑓 =
 𝑓2−𝑓1 

𝑓1
× 100%                       (30) 

 

𝐸𝑠 =
 𝑆𝑛2−𝑆𝑛1 

𝑆𝑛1
× 100%                   (31) 

 

 

 

RESULTS AND DISCUSSION 

 

 In this study, the flexural sensitivity and 

resonant frequency of the vibration modes of an 

inclined AFM cantilever with a sidewall probe have 

been analyzed and the closed-form expressions 

have also been obtained, taking into account the 

effects of the various parameter, such as the slope 

of the cantilever, the angle between the extension 

and cantilever, the connection position of the 

extension and the damping. A good analysis must 

consider all of the parameters simultaneously. The 

flexural sensitivity is defined as the change in the 

flexural vibration frequency of a mode with respect 

to the change in contact stiffness [19]. In order to 

analyze the effect of these parameters on the 

flexural sensitivity and resonant frequency, we 

considered the geometric and material parameters 

as 𝐸 = 170𝐺𝑃𝑎, 𝜌 = 2300
𝐾𝑔

𝑚3 , 𝑎 = 50 𝜇𝑚, 𝑏 =

2 𝜇𝑚, 𝐿 = 300 𝜇𝑚, 𝑕 = 10𝜇𝑚, 𝐻 =
150𝜇𝑚 𝑎𝑛𝑑 𝐶𝐿 = 10−5. The normal contact 

stiffness and damping was assumed as𝐾𝑛 =
0.9𝐾𝐿 , 𝐶𝑛 = 0.8𝐶𝐿. 

 The resonant frequency of the first 

vibration mode for the various connection position 

of the extension is shown in Figure 2. As it can be 

seen, the resonant frequency is equal to the free 

resonance frequency for very low values of 𝛽𝐿. As 

𝛽𝐿 increases, the frequency rapidly increases until it 

eventually reaches a constant value at a very high 

value of contact stiffness. It can also be seen that 

the effect of connection position is not significant 
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for the low values of contact stiffness. By gradually 

increasing the contact stiffness of the system, the 

effect of increasing the connection position of the 

extension is that the resonant frequency also rises.  

 

 
 

Fig. 2. The resonant frequency of the first mode as a function of 

contact stiffness at various values of connection position 

 

 

 Figure 3 illustrates the change in the first 

normalized flexural sensitivity due to the change in 

𝛽𝐿 and the connection position of the extension. 

The figure reveals that the greatest flexural modal 

sensitivity occurs at a small contact stiffness of the 

system, in which the connection position is also 

small. 

 The normalized flexural sensitivities, Sn 

of the first four vibration modes for an AFM 

cantilever are depicted in Figure 4. With a short 

glance, it can be found that the first mode is most 

sensitive to changes in surface stiffness. It can also 

be found that the maximum values for the 

sensitivities of the first four modes are 0.28398, 

0.003527, 0.005119, and 0.001247. When 𝛽𝐿 

exceeds 120, the sensitivity of the first mode is 

smaller than that of the second mode and the 

second mode experiences the largest shifts in the 

frequency rather than other modes. By increasing 

the contact stiffness, a similar phenomenon was 

found at other higher mode and the sensitivity of 

higher mode will be more sensitive than lower one. 

 
 

Fig. 3. The normalized flexural modal sensitivity of the first mode as a 
function of contact stiffness for an ACP at various values of 

connection position 

 

 

 
 

Fig. 4. The normalized flexural modal sensitivity as a function of 

contact stiffness for the first four modes 

 

 

 Figure 5 shows the relative shift of the 

resonant frequency for the first three modes of 

damped and undamped systems. At low values of 

contact stiffness, the effect of damping on the 

resonant frequency is considerable, especially for 
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the first mode. It can be seen from this figure that 

the maximum values of the relative shift of the first 

three resonant frequencies are 137, 182, and 211 

percent, respectively. However, the effect of 

damping on the first resonant frequency rapidly 

decreases with an increase in the contact stiffness. 

When, the value of 𝛽𝐿 reaches approximately 1, the 

sensitivity of mode 2 is greater than mode 1. A 

similar phenomenon is found at other higher mode. 

For higher values of 𝛽𝐿, the effect of damping on 

the resonant frequency of higher mode is more than 

that of the lower one. 

 

 
 

Fig. 5. A relative shift of resonant frequency for the first three modes 
as a function of contact stiffness: (1) undamped; (2) damped. 

 

 

 The effect of damping on the first 

flexural modal sensitivity is illustrated in Figure 6. 

It can be inferred that the interacting damping 

decreases the flexural sensitivity dramatically at 

low value of contact stiffness. 

 The effects of cantilever and extension 

angles (𝛼 and 𝜃) on the resonant frequency and the 

flexural modal sensitivity at various length ratios of 

the cantilever and extension, 𝐻/𝐿 are investigated 

in Figures 7 and 8. Two different cases are 

considered in these figures. In the first case, the 

relative shifts of the frequency, 𝐸𝑓  and the 

sensitivity, 𝐸𝑠  are analyzed for 15° shift of the 

extension angle, 𝛼 from 90° to 75° when the 

cantilever is horizontal. In the second case, the 

relative shifts of the frequency, 𝐸𝑓  and the 

sensitivity, 𝐸𝑠  are analyzed for 15° shift of the 

cantilever angle, 𝜃, from 0° to15° when the 

extension angle is vertical. In both cases, three 

values for the length ratios of the cantilever and the 

extension 𝐻/𝐿 are considered as 0.2, 0.5 and 0.8. 

The figures reveal that the relative shifts of the 

frequency, 𝐸𝑓  and the sensitivity, 𝐸𝑠 are not 

considerable when the contact stiffness, 𝛽𝐿 exceeds 

100. Also, increasing the /𝐿 , increases the relative 

shifts of either the frequency or the sensitivity. It 

can be found from Figure 7 that the change in the 

extension angle, 𝛼 is more effective on the resonant 

frequency in comparison to the change in the 

cantilever angle, 𝜃 particularly at higher values of 

𝐻/𝐿. The situation is different in Fig. 8. In this 

figure, the effect of change in the cantilever angle 

on the relative shift of sensitivity is more than the 

change in the extension angle when the 𝐻/𝐿 is low. 

By increasing the 𝐻/𝐿 incrementally, the shift in 

the extension angle is more effective on the relative 

shift of sensitivity. 

 

 
 

Fig. 6. The effect of damping on the normalized flexural modal 
sensitivity as a function of contact stiffness for an ACP. 
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Fig. 7.  A relative shift of the resonant frequency of mode1 as a 

function of contact stiffness at various length ratios of the cantilever 

and the extension,𝑯/𝑳 and for two cases; case 1: a 𝟏𝟓° shift of 

extension angle, 𝜶, from 𝟗𝟎° to𝟕𝟓°; case 2: a 𝟏𝟓° shift of cantilever 

angle, 𝜽, from 𝟎° to𝟏𝟓°. 

 

 

 
 

Fig. 8.  A relative shift of the normalized flexural modal sensitivity of 
mode1 as a function of contact stiffness at various length ratios of the 

cantilever and the extension,𝑯/𝑳 and for two cases; case 1: a 𝟏𝟓° shift 

of extension angle, 𝜶, from 𝟗𝟎° to𝟕𝟓°
; case 2: a 𝟏𝟓° shift of cantilever 

angle, 𝜽, from 𝟎° to𝟏𝟓°. 

 

 

CONCLUSIONS 
 

 In this paper, the effects of the interaction 

stiffness and damping, and the geometrical 

parameters of the cantilever and extension on the 

resonant frequencies and flexural sensitivities of an 

atomic force microscope cantilever with a sidewall 

probe have been analyzed. According to the 

analysis, the first mode is the most sensitive mode 

when the contact stiffness is low. However, the 

high-order flexural vibration modes are more 

sensitive than the first mode when the contact 

stiffness is greater. The results indicated that at 

high values of contact stiffness, the resonant 

frequency increases as the connection position 

increases. On the other hand, the connection 

position is effective on the flexural modal 

sensitivity at the low values of contact stiffness. At 

this situation, the flexural sensitivity is higher when 

the extension is close to the free end of the 

cantilever. The results also showed that the effects 

of damping on the flexural sensitivity are 

considerable and cannot be neglected when the 

contact stiffness is lower. Finally, it was observed 

that at low values of contact stiffness, the effects of 

changes in the cantilever angle, 𝜃 and the extension 

angle, 𝛼 are significant especially for the flexural 

modal sensitivity and are the functions of the 𝐻/𝐿. 
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