[1] Bibby D. C., Talmadge J. E., Dalal M. K., Kurz S. G., Chytil K. M., Barry S. E., Shand D. G., Steiert M., (2005), Pharmacokinetics and biodistribution of RGD-targeted doxorubicin loaded nanoparticles in tumor-bearing mice. Int. J. Pharm. 293: 281-290.
[2] Sanjoy K. D., Bivash M., Manas B., Lakshmi K. Gh., (2009), Development and in vitro evaluation of Letrozole loaded biodegradable nanoparticles for breast cancer therapy. Braz. J. Pharm. Sci. 45: 33-36.
[3] Basudev S., Kousik S., Sumit B., Biswajit Mu., (2010), Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation. Int. J. Nanomed. 5: 621–630.
[4] Miller W. R., Dixon J. M., (2002), Endocrine and clinical endpoints of exemestane as neoadjuvant therapy. Cancer Cont. 9: 9–15.
[5] Arbos P, Campanero M. A, Arangoa M. A, Renedo M. J, Irache J. M., (2003), Influence of the surface characteristics of PVM/ MA nanoparticles on their bioadhesive properties. J. Control. Release. 89: 193-201.
[6] Andrew R., (2009), A review of the use of exemestane in early breast cancer. Therap. Clin. Risk Manag. 5: 91–98.
[7] Scott L. J., Wiseman L. R., (1999), Exemestane. Drugs. 58: 675–680.
[8] Lonning P. E., (1998), Pharmacological profiles of exemestane and formestane, steroidal aromatase inhibitors used for treatment of postmenopausal breast cancer. Breast Cancer Res. Treat. 49: 45-50.
[9] Praveen S., Hiremath K. S., Soppimath G., Betageri V., (2009), Proliposomes of exemestane for improved oral delivery: Formulation and in vitro evaluation using PAMPA, Caco-2 and rat intestine. Int. J. Pharm. 380: 96–104.
[10] Ajeet K., Singh A. Ch., Manish S., Satish C., Upadhyay R., Mukherjee,and R., Khar K., (2008), Exemestane Loaded Self-Microemulsifying Drug Delivery System (SMEDDS): Development and Optimization., AAPS Pharm. Sci. Tech. 2: 628-34.
[11] Burc Y., Erem B., I˙mran V., Murat S.¸ (2010), Alternative oral exemestane formulation: Improved dissolution and permeation. Int. J. Pharm. 398: 137–145.
[12] Lobenberg R., Amidon G. L., (2000), Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 50: 3–12.
[13] FDA NDA 20753/S006–Approved Labeling & Clinical Pharmacology and Biopharmaceutics Review(s).
[14] Naik J. B., Mokale V. J., (2012), Formulation and evaluation of Repaglinide nanoparticles as a sustained release carriers. Novel Sci. Int. J. Pharm. Sci. 1: 259-266.
[15] Yuyan J., Nathalie U., Monique M.-A., Claude V., Maurice H., Thomas L., Philippe M., (2002), In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. J. Am. Heart Assoc.105: 230-235.
[16] Ubrich N., Schmidt C., Bodmeier R., Hoffman M., Maincent P., (2005), Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int. J. Pharm. 288: 169–175.
[17] Prakash B., Hariom U., Sajeev Ch., (2011), Brimonidine Tartrate–Eudragit Long-Acting Nanoparticles: Formulation, Optimization, In Vitro and In Vivo Evaluation. AAPS Pharm. Sci. Tech. 12: 1087–1101.