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ABSTRACT: In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the
action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small

length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement
derived from the Flügge-type buckling equations. Through comparison of the results obtained from the present analytical

solution and the ones from molecular dynamics (MD) simulations, the appropriate values of nonlocal parameter are
proposed for (8, 8) armchair SWCNTs with different kinds of boundary conditions. The effects of nonlocal parameter
and boundary conditions on the critical buckling load are also examined. Moreover, in spite of the uncertainty that exists
in defining the in-plane stiffness and bending rigidity of nanotube, by adjusting the nonlocal parameter, the present
nonlocal shell model is shown to be capable of predicting the MD simulations results.
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INTRODUCTION
Notwithstanding the appearance of the first

evidence for the tubular nature of carbon filaments in
1952 [1], the 1991 Iijima paper in Nature [2] re-ignited
research interest in the scientific community of
nanoscience and nanotechnology. This is largely due
to the superior physical and chemical properties of
carbon nanotubes (CNTs) over other existing materials.
In terms of mechanical properties, CNTs have shown
to be among the lightest, stiffest and strongest
materials yet measured with high elastic modulus of
greater than 1 TPa comparable to that of diamond and
strengths many times higher than the strongest steel
at a fraction of the weight. CNTs are expected to
withstand large strains of up to 10% [3]. They are also
quite flexible and can return to their original shape after
bending and buckling [4].

The theoretical predictive models based on
continuum mechanics are computationally efficient
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and are gaining more popularity in recent years. Yao
and Han [5] presented an elastic multi-shell model to
study the buckling of multi-walled CNTs under
torsional load coupling with temperature change.
Based upon the finite-deformation shell theory, Lu et
al. [6] studied the buckling of double-walled CNTs
subjected to compression or torsion. On the basis of a
continuum cylindrical shell model, buckling and post-
buckling of multi-walled CNTs was investigated by He
et al. [7]. Using a single-beam model, Ansari et al. [8]
analyzed the thermal effect on nonlinear oscillations
of CNTs with arbitrary boundary conditions. Also,
there are many other researches in which the vibrational
and buckling response of CNTs are studied via classical
elasticity continuum [9-17].

One of the major drawbacks of the classical
continuum mechanics, however, is that it is scale free
and cannot accommodate size effects. As the
dimensions of structures are scaled down to the
submicron level, size effects become increasingly
important. A more sophisticated version of continuum
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mechanics capable of accommodating size effects is
the nonlocal continuum mechanics initiated by Eringen
[18, 19]. The successful application of nonlocal
continuum mechanics has been reported by many
research workers [20-32]. These studies have been
conducted based upon the beam models [21, 22, 26,
31], the shell models [23-25, 27, 29, 32] and the plate
models [28, 30].

In the present work, a nonlocal shell model is
developed based on the accurate Flügge shell theory

to obtain the critical axial buckling load of SWCNTs.
To analytically solve the problem, the Rayleigh-Ritz
method is implemented to the variational form
equivalent to the Flügge type stability equations. To

derive the appropriate values of nonlocal parameter,
the developed nonlocal model is calibrated with
molecular dynamics (MD) simulation results. Due to
the vagueness that exists in the specification of the
proper values for the in-plane stiffness and bending
rigidity of CNTs in the literature, the effects of these
properties on the axial buckling behavior of SWCNTs
are fully investigated in this paper.

EXPERIMENTAL
According to Eringen [18, 19], the concept of

nonlocality is inherent in solid state physics where the
nonlocal attractions of atoms are prevalent. Unlike the
conventional elasticity theory, in the nonlocal
continuum theory it is assumed that the stress at a
point is a function of strains at all points in the
continuum. The nonlocality is taken into account by
applying the nonlocal constitutive equation given by
Eringen [19]

                                         (1)

where  is the macroscopic stress tensor at a point;
 is the nonlocal parameter or characteristic length

which leads to consider the small scale effect; In the
limit when the characteristic length goes to zero, the
nonlocal elasticity reduces to the classical (local)
elasticity. The stress tensor is related to the strain by
generalized Hooke�s law as

                                                                 (2)
here  is the fourth order elasticity tensor and � �

denotes the double dot product. Hooke�s law for the

stress and strain relation is hence expressed by [19]

(3)

Where  is Young�s modulus of the material and 

is the Poisson�s ratio. Also,  and  are longitudinal

and angular circumferential coordinates. , , and

  are normal and shear stresses and , , and

 are normal and shear strains. The Laplace operator

in the polar coordinate system is given by

, and  is the radius

measured from the mid-plane of the cross section in
the following CNT analysis.

Consider an elastic cylindrical shell of mid-plane
radius , length , thickness , as shown in Fig. 1.
According to the classic shell theory, the three-
dimensional displacement components ,  and  in the ,
and  directions respectively are of the form [33]

(4)

where  are the reference surface

displacements.  The kinematic relations are given by
[33]

(5)

The stress and moment resultants can be obtained
by [33]

(6)
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(9)

where   are the partial operators,

which are given in Appendix.
The Rayleigh-Ritz method is among the so-called

variational approaches that are prevalently used in the
analysis of continuous systems. In order to apply the
Rayleigh-Ritz method, it is first necessary to obtain
the variational statement equivalent to the partial
differential equations that are governed by the buckling
of SWCNTs.

According to the semi-inverse method [26], a
variational trial-functional  can be
constructed as follows

(10)

in which

(11)
and

(12)

The field variables of an SWCNT, i.e.  and , are

taken as

(13)

 

Moreover, in the nonlocal elastic shell theory, the
stress and moment resultants are defined based on the
stress components in equation (3), and therefore can
be expressed as follows by using the kinematic
relations in the Flügge shell theory [19,33]

(7)

Where  is the bending rigidity of shell.

If  and  denote the longitudinal and circumferential

coordinates, respectively, the governing equations on
the basis of the Flugge shell theory are given as [33]

(8)

Where  represents the applied axial load.

By the use of equations (7), equations (8) can be

stated in terms of the three field variables ( ) as

Fig. 1: Schematic of a single-walled carbon
nanotube treated.
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The critical axial buckling loads of simply-supported,
clamped-free and clamped (8,8) armchair SWCNTs

versus nanotube aspect ratio ( ) are plotted in Figs.

3 and 4. To make the model more realistic, the nonlocal

parameter  needs to be calibrated such that the

nonlocal shell model predicts the results of MD
simulations. The least-square method is used to
determine the best value for the nonlocal parameter so
that the sum of the squares of the errors between the
results from MD simulations and the corresponding
ones from the nonlocal shell model is minimized for a
relatively large range of . From these figures, the
nonlocal shell model developed herein is capable of
predicting the results of MD simulations provided that
the nonlocal parameter is properly calibrated. The
values of the nonlocal parameter are, and,
corresponding to the simply-supported, clamped-free
and clamped SWCNTs, respectively. This indicates that
the significance of the small size effects on the critical
buckling loads of SWCNTs is dependent on the
boundary conditions of CNT. As shown in Figs. 3 and
4, the local shell model (e

0
a=0) tends to overestimate

the critical buckling loads of SWCNT, especially when
its aspect ratio decreases. In addition, Fig. 4 shows
that as the small-scale parameter increases, the critical
buckling load obtained from the nonlocal shell model
becomes smaller than that from its local counterpart.

Illustrative examples
Example 1: In this example, a comparison is made

between the results calculated by the present Flügge

shell model and those computed from the Donnell shell
model developed in [39]. The values of critical buckling
loads corresponding to SWCNTs with different end

Where ,  and  are the constant parameters, n

the circumferential wave number and  is the axial

function that satisfies the geometric boundary
conditions of the CNT under consideration. The axial

function  is selected as the characteristics beam

function as [34]

(14)

in which  are constants with value

,  or  depending on the tube ends,  shows the

roots of the transcendental equations obtained from

the CNT boundary conditions and  denotes the

parameters corresponding to . The parameters ,  and
that are chosen according to the CNT boundary
conditions are given in Table 1. Substituting equations
(13) into equation (10) and then minimizing the energy
functional  with respect to the unknown coefficients ,
and  result in the following algebraic equations

(15)

The above equations can be recast in the form of a
generalized eigenvalue problem. By solving the
eigenvalue problem, the critical axial buckling loads of
SWCNTs can be extracted and the associated
eigenvectors yields the corresponding buckling mode
shapes.

RESULTS AND DISCUSSION
In this section, the accuracy of the present solution

is assessed first. Further several numerical results are
presented to illustrate the buckling behavior of
SWCNTs with SS, CC, CS and CF boundary conditions.
The schematics of the considered end conditions are
shown in Fig. 2. The mechanical properties and
thickness of SWCNTs used in the numerical
evaluations performed herein are taken to be E= 3.4TPa,
v=0.3, D=0.85 eV, h=0.1 nm [32, 35-38], except otherwise
stated.

Validation of the present approach by MD simulations results
In this subsection, the effectiveness of the present

nonlocal shell model is assessed by MD simulations
taken from [39] and the proper values of nonlocal
parameter are proposed.

 
Fig. 2: Schematic of SWCNTs with (a) SS, (b) CC, (c)

CS and (d) CF end conditions.
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conditions calculated based upon the MD simulations
and nonlocal continuum theory including the Donnell
and Flugge shell models are tabulated in Table 2. It is
observed that the results generated by the Flügge shell

model are in closer agreement with the ones computed
via MD simulations.

Fig. 3: Critical axial buckling loads from continuum shell
model and MD simulation for (8,8) armchair simply-

supported and clamped-free SWCNTs.

 

Fig. 4: Critical axial buckling loads from continuum
shell model and MD simulations for (8,8) armchair

clamped SWCNTs.

From Table 2, at higher values of aspect ratio where
the effect of nonlocality diminishes, the Donnell shell
model tends to overestimate the critical buckling loads
of nanotubes. This reveals that in the buckling analysis
of SWCNTs, applying the Flugge shell theory increases
the accuracy of the results as compared to the
corresponding Donnell one. From this table, for the

case of clamped boundary conditions, at lower values
of aspect ratio (i.e.  and ) the
difference between the results of the nonlocal shell
models and those of MD simulations becomes more
pronounced. Furthermore, for all the selected boundary
conditions, the values of nonlocal parameter related to
the Flugge shell model are lower than those of Donnell
shell model.

Example 2: Presented graphically in Fig. 5 is the
critical buckling load of a simply supported SWCNT
versus a wide range of its aspect ratio  for several
nonlocal parameters. The values of the nonlocal
parameter are assumed to be varied from 
(corresponding to the classical/ local continuum model)
to . According to this figure, two types of
buckling are readily distinguishable: the shell-like
buckling which is almost independent of nanotube
aspect ratio and the column-like buckling which is
strongly sensitive to the aspect ratio. For CNTs of
relatively short length for which the shell-like buckling
is dominant, the profound effects of the small length
scale on the critical buckling loads of the CNT are seen
from Fig. 5, especially for shorter CNTs and higher
values of nonlocal parameter. As the aspect ratio
increases, the effect of small length scale diminishes
so that the buckling envelopes tend to converge. In
other words, the critical buckling loads of long CNTs
for which the column-like buckling becomes dominant
are insensitive to the effect of the small length scale.
Unlike the classical continuum model, the present
nonlocal shell model is capable of predicting the strong
dependence of the critical buckling loads on nanotube
aspect ratio whether short or long.

 
Fig. 5: Effect of the nonlocal parameter on the critical

buckling load for a simply-supported SWCNT ( ).
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Table 1: Values of ,  and  for SS, CC, FF, CS, CF and FS boundary conditions.

Table 2: Critical buckling loads [nN] of (8,8) armchair SWCNTs with different boundary conditions calculated by the MD
simulations and nonlocal continuum models.

a Calculated based on MD simulations
b Calculated based on the Donnell shell model
c Calculated based on the Flügge shell model

Example 3: For the results generated so far, the
nanotube in-plane stiffness Eh has been taken to be 340
Jm-2. However, there exist some inconsistencies
concerning this quantity in the literature. The reported
CNT in-plane stiffness is largely scattered, ranging from
300 to 420 Jm-2 [40]. Figs. 6(a)-6(d) are presented to
investigate the influence of the in-plane stiffness
variation on the critical buckling loads of a (8,8) armchair

SWCNT with SS, CC, CS and CF boundary conditions,
respectively. This figure shows that for all the selected
boundary conditions, the critical buckling loads
calculated via the local shell model are sensitive to
the nanotube in-plane stiffness and also the larger
the in-plane stiffness, the higher the critical buckling
loads. The difference is more considerable for shorter
length CNTs. However, regardless of the ambiguity

R. Ansari and H. Rouhi
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that exists in defining nanotube in-plane stiffness, via
calibrating the nonlocal parameter, the present nonlocal
shell model is capable of predicting the MD simulations
results. Table 3 presents the critical buckling loads
corresponding to SWCNTs with simply-supported end
conditions for two different values of in-plane stiffness.
As can be seen in this table, in contrast to the local
shell model, even in the presence of uncertainty in
defining the in-plane stiffness, the nonlocal shell model
has the potential to predict the MD simulations results
provided that the nonlocal parameter is appropriately
adjusted.

Example 4: Previous study reveals that the bending
rigidity of SWCNTs should be regarded as an
independent material parameter not related to the
representative thickness by the classic bending rigidity
formula, i.e. , and the actual
bending rigidity of SWCNTs is lower than its classical
counterpart [41]. Thus, due to the not-well-defined

nanotube bending rigidity, the critical buckling loads
of simply supported and clamped-free SWCNTs with
bending rigidity of  and  against the  ratio are tabulated
in Table 4. It is observed that applying the bending
rigidity of  to the local continuum shell model, yields
the slight increase of the critical buckling loads. For
the nonlocal shell model with bending rigidity of  to be
in agreement with the MD simulations results, the
values of the nonlocal parameter  are  and ,
corresponding to the simply supported and clamped-
free SWCNTs, respectively, which are a little higher
than those corresponding to SWCNTs with bending
rigidity of .

The three dimensional buckling mode shapes of a
simply supported SWCNT are plotted in Fig. 7(a-d),
for which the circumferential mode number is
considered to be 5 and axial mode number varies from
1 to 4. These figures are also accompanied by a cross-
sectional view in the middle of the SWCNT.

Fig. 6: Influence of the in-plane stiffness on the critical buckling load of a (8,8) armchair SWCNT (e
0
a=0)

with: (a) simply supported-simply supported, (b) clamped-clamped, (c) clamped-simply supported, (d)
clamped-free boundary conditions.
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Table 3: Critical buckling loads [nN] of (8,8) armchair simply-supported SWCNTs for different values of in-plane stiffness.

Fig. 7: Buckling mode shapes of a simply-supported SWCNT in the fifth circumferential mode number (R=8.5 nm, L/R=5): (a)
first axial mode, (b) second axial mode, (c) third axial mode, (d) fourth axial mode.

Table 4: Critical buckling loads [nN] of a (8,8) armchair SWCNT with simply supported-simply supported and clamped-free
boundary conditions for different values of bending rigidity.

R. Ansari and H. Rouhi
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CONCLUSION
Based upon the Eringen theory of nonlocal elasticity,

the stability characteristics of SWCNTs subjected to
the axial load were analyzed. The variational form of
the Flügge type buckling equations was constructed

to which the Rayleigh-Ritz method was applied. Among
the more significant conclusions to be obtained, the
following findings may be summarized from the present
study:

The present theoretical formulation based on the
Flügge shell theory is simpler and more accurate than

those based on the Donnell shell theory. The classical
continuum model tends to overestimate the critical
buckling loads of small size nanotubes and one must
recourse to the nonlocal version to reduce the relative
error. As the small-scale parameter increases, the critical
buckling loads obtained from the nonlocal shell model
become smaller than those from its local counterpart.
The effects of small length scale on the critical buckling
load are more pronounced for SWCNTs of relatively
short length for which the shell-like buckling is
dominant. However, the critical buckling loads of long
CNTs for which the column-like buckling becomes
dominant are insensitive to the effect of the small length
scale. The significance of the small size effects on the
critical buckling loads of SWCNTs was shown to be
dependent on geometric parameters, boundary
conditions and material properties of SWCNT. In spite
of the uncertainty that exists in defining nanotube in-
plane stiffness and bending rigidity, by adjusting the
nonlocal parameter, the present nonlocal shell model
was shown to be capable of predicting the MD
simulations results.
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