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ABSTRACT: Dueto high surface-to-volume ratio of nanoscale structures, surface stress effects have a significant
influence on their behavior. In this paper, a two-dimensional problem for an elastic layer that is bonded to a rigid
substrate and subjected to an inclined concentrated line load acting on the surface of the layer isinvestigated based on
Gurtin-Murdoch continuum model to consider surface stress effects. Fourier integral transforms are used to solve the
non-classical boundary-value problem related to inclined point load and an analytical solution is obtained for the
corresponding boundary-val ue problem. Selected numerical results are presented for different values of loading angle
and are compared with the classical onesto illustrate the influence of the surface stress effects on the stiffness of nano-
coating and ultra-thin films. It isfound that the surface stress effects have aquite large influence on the response of the
nanofilm especially for more vertical loading (higher values of the angle of loading) and make the layer stiffer than the

classical case.

Keywor ds: Boundary-value problem; Elasticity; Nanomechanics, Point loading; Surface stress.

INTRODUCTION

Nanoscience and nanotechnology have generated
considerable interest and have attracted much
investment in order to develop new revolutionary
applications in a wide range of disciplines. To
successfully design and manufacture the
nanostructures and systems, a fundamental study of
their mechanical behavior isessential. Nanomechanics
are the area of mechanics in which the mechanical
properties and behavior of materials and structures at
the nanoscale are studied.

An interesting class of problems in nanoscale
mechanics deals with exceptional response and
properties due to surface energy effects. These effects
can be more substantial especially for thinfilmswhere
there are a great number of atoms near the surface in
comparison withthat in the bulk, Thinfilmshave many
applications such as corrosion resistant coating,
microelectronics and integrated circuits, etc. Vinci and
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Vlassak [1] reviewed the mechanical behavior of thin
films, and proposed new experimental techniques to
measure thin film properties. Zhao et al. [2] introduced
a method that utilizes only the loading curves of an
indentation test to extract the elastoplastic properties
of an elastic-perfectly plastic thin film as well as the
plastic propertiesof awork hardening thinfilm. Pervan
et al. [3] studied the growth mode, structural and
electronic properties of ultra-thin films at room
temperature by meansof Auger electron spectroscopy,
low energy electron diffraction and angular-resolved
photoemission. Ngo et al. [4] investigated the stress
field in a multilayer thin films-substrate system
subjected to non-uniform temperature and misfit strains
based on an extension of the classical Stoney formula.

Contact mechanics problem of asurface-loaded layer
based on a rigid base has a wide range of practical
applications in the field of microelectronics, nano-
indentation, and surface coating. Chen et al. [5] studied
the mechanical properties of thin film-substrate
systems by nano-indentation, considering the effects
of thickness and different coating-substrate
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combinations. They found that the classical plasticity
theory cannot predict the experimental results, even
considering the indenter tip curvature. Li et al. [6]
investigated the influence of contact geometry,
including the round tip of the indenter and the
roughness of the specimen, on hardness behavior for
elastic-plastic materials by means of finite element
simulation. Dhaliwal and Rau [7,8] reduced the
axisymmetric Boussinesg problem of an elastic layer
lying over an elastic half-space to a Fredholm integral
equation that was solved numerically to obtain the
elasticfield.

Nowadays, a film can be made as thin as few
nanometers using modern processing technologies.
Yasumoto and Tomimasu [9] proposed anovel method
for thin film fabrication using the mid-infrared free
electron laser having atunablewavelength. Itakaet al.
[10] demonstrated combinatorial approach in
investigation of organic thin film fabrication. Through
high ratio of surfaceto volume of ultra-thinfilms, itis
necessary to consider surface stress effects, which is
usually neglected in the classical mechanics. Gurtin
and Murdoch [11,12] proposed a generic theoretical
approach based on continuum mechanics concepts to
account the surface energy. The Gurtin-Murdoch
surface stressmodel has recently been used to consider
surface stress effects in modern contact problems.
Mogilevskaya et al. [13] analyzed a two-dimensional
problem of multiple interacting circular nano-
inhomogeneities based on the Gurtin-Murdoch model.
Li et al. [14] examined the effect of surface stress on
stress concentration near a spherical void in an elastic
medium using Gurtin-Murdoch continuum elasticity.
He and Lim [15] derived surface Green function for
incompressible, elastically isotropic half-space coupled
with surface stress by using double Fourier transform
technique and Gurtin-Murdoch model. Gordeliy et al.
[16] used the generalized Gurtin-Murdoch model for a
two-dimensional, transient, uncoupled thermoelastic
problem of an infinite medium with a circular nano-
scale cavity. Based on the surface elasticity theory,
Koguchi [17] presented Green’s functions for
anisotropic elastic half-space using Stroh’s formulas.
Bar On et al. [18] developed a continuum model for
nanobeams, including both surface effects and material
heterogeneity. A comparison between continuum and
atomistic solutions revealed differences. This result,
originated from local transition effects in the
neighborhood of strong non-uniformities. Shen and
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Hu [19] proposed an elastic enthalpy variational
principlefor nanosized dielectrics concerning with the
flexoelectric effect, the surface effects and the
electrostatic force where surface effects contain the
effects of both surface stress and surface polarization.

According to the above literature review, it can be
concluded that developed solutions based on Gurtin-
Murdoch continuum elasticity accounting for the
surface stress effects is necessary to study nanofilms.
Inthiswork, ageneral two-dimensional problem for an
isotropic elastic ultra-thin film bonded to a rigid
substrate and subjected to incline concentrated
loading is considered in the presence of surface stress
effects.

EXPERIMENTAL
Fundamental Equations

The constitutive relations of the bulk material
relating non-zero stressesto the corresponding strains
can be expressed as

I:f._'-i' :2.“55_{ + .1655;;& (1)
where o;; and £;; denote, in sequence, components of
displacement and stress, &;; is the usual Kronecker

delta, & and 4 are the Lame constants of the bulk
materid.

According to the Gurtin-Murdoch continuum model,
surface constitutive relation can be obtained as

03/3 = 10045 + (Ao + T0) &y, 8up + 2o — To)eup

@

where 7, is the surface residual stress without
constraint; A, and i are surface Lame constants or
surface elastic constants.

Note that the surface stress is a second rank tensor

intangent plane of the surface, so & and 7 take integers
lor2.

Non-Classical Solution for Displacement and Stress
Components

Non-Classical Solution with Finite Thickness of
Layer:

The nanofilm considered herein is an elastic layer
with finite thickness subjected to external inclined point
loading on the surface. A Cartesian coordinate system
(X,, X, X;) isintroduced asshownin Fig. 1.
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Fig. 1: Nanofilm subjected to inclined point load.

The displacement and stress components are
indicated by «; and =:, respectively. The general
solution for these components of displacement and
stress for a two-dimensional elastic layer can be
expressed using Fourier integral transformsas[20,21]
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Where = \/—1 ,and A, B.C, D arethearbitrary

coefficients which can be determined by boundary
conditions.

c733|x3—0 = —py(x1) (4-a)
d

0'13|x3_0 = [pt(xl) + (2 + 29) ul] (4-b)

Usly=pn =0 (4-¢)

Uslx,=p = 0 (4-d)

By applying Fourier integral transformto equations
(4) and substituting equation (3), the following
equations can be obtained:

P!)
Atc=1t (5-a)

200 + Ao [/1 +2u
2p A+p
(5-b)
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where F, and F; arethe Fourier integral transforms
of p, (x,1and p. (x, ), respectively.
The coefficients A, B. € and D' can be obtained by
solving the equations (5) as
A'tia” B't+iB"

A= , B= , C= , D=
H H H H
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and ¥ =

dimension of length. In the absence of surface stress
effects, the value of 1 will be vani shed and the solution
will be reduced to the classical one.

1+p is a constant with the

Non-Classical Solution with Infinite Thickness of Layer
When the value of thickness of a nanofilm is so
larger than its other dimensions, it can be assumed

that iz approaches infinity, and the above solution will
be reduced to the following closed-form

uy = (g )y + Cugde

2y = (ug)y + (ug),

gy = (oyy )y + (as);
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If ¥ = 0, the solution obviously reduces to the
classical elasticity solution.

RESULTSAND DISCUSSION
Numerical Results

Asit was shown in the previous sections, a closed-
form solution for the case of ananofilmwith finite value
of thickness cannot be obtai ned due to the complexity
of theintegrants. However, numerical techniqueisused
to calculate the elastic field of a layer with finite
thickness. In this section, selected numerical results
are presented for Nickel [1 1 1] surfaceto indicate the
influence of surface stress effects on the elastic field
of ultra-thin layer subjected to inclined point loading.
Thematerial surface constants corresponding to Nickel
surface can be obtained from atomistic simulations
[22,23], which are: g = 1.633 N/m,
Ay =1.247 N fm, 7, = 0.1154 N /m. Thebulk elastic



Int. J. Nano Dimens., 6(5): 463-472, 2015 (Special Issue for NCNC, Dec. 2014, IRAN)

congtantsfor Nickel are: i = 76 GPa, i = 126.2 GPa
[24]. Inthefollowing numerical resultsfor the case of
finite thickness of layer, it istaken that h = 40yr. The
non-dimensional coordinates are used to show the
numerical results as: r;= x,/is, ¥g=xy/1l,
h = hfiy.

Depicted in Figs. 2 and 3 are the distributions of
the surface displacements of the nanofilm due to
inclined point loading with angle of & = 457at
different depths of the layer. It can be seen that the
surface stress effects have significant influence on
the distribution of displacement especially at lower
depth of the layer and make the layer stiffer than the
classic case. However, both in classical and non-
classical solutions displacements decrease at |ower
depth of the layer.

Figs. 4-6 show the stress profiles of the nanofilm
at different depths of the layer under inclined point

load with angle of . The remarkable influence of
surface stress effects on the distribution of stressis
found clearly. Also, the stiffening behavior through
surface stress effects observed previously for
displacement profiles can be seen for the distribution
of stressesin all cases of depth of the layer.

Figs. 7-11 illustrate the influence of angle of

loading on the distribution of different components
of disPlacement and stress along the x, axis. It is

found that with increase of angle of loading
(approaching to vertical point load) surface stress
effects are more important and stiffening the layer
due to these effects is quiet significant for upper
values of &. So, it can be concluded that the surface
stress effects have more remarkabl e influence on the
displacement and stress profiles for the case of
vertical point load in comparison with the horizontal
point load.
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Fig. 2: Distribution of nondimensional horizontal displacement at different depths of the layer along the axis.
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Fig. 3: Distribution of nondimensional vertical displacement at different depths of the layer along the axis.
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Convergenceof thenumerical results

InTables 1 and 2, the convergence criterion of some
of the selected numerical results is examined. It is
observed from these tables that the convergence is
achieved rapidly.

In Table 1, the value of non-dimensional
displacement components are given for the layer with

different thicknesses and =, = 0.3 . Table 2 shows
the values of non-dimensional stress components at
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different depths of the layer with the layer thickness
h = 40y and . The Gauss quadrature technique is

used to calculate numerical integration. In each
iteration, the number of intervals has increased from
the previous one to decrease the error of
approximation. This pattern of convergence of the
numerical technique reflects its efficiency and
accuracy.
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Table 1: Convergence of non-classical results for

nondimensional stress components.

Number o« =45 a =90
]ter(;ft-ion % % @ @ % %
P P P P P P

1 0.08550725 0.35743637 0.30757791 0.08609084 0.47411344 0.43233865
2 0.08793392 0.36758031 0.31630688 0.08854333 0.48756864 0.44460830
3 0.08852460 0.37004947 0.31843162 0.08913811 0.49084380 0.44759488
4 0.08867139 0.37066306 0.31895966 0.08928593 0.49165768 0.44833705
5 0.08870803 0.37081623 0.31900147 0.08932283 0.49186085 0.44852232
6 0.08871719 0.37085451 0.31912441 0.08933205 0.49191162 0.44856862
7 0.08871948 0.37086408 0.31913264 0.08933436 0.49192431 0.44858020
8 0.08872005 0.37086647 0.31913470 0.08933494 0.49192749 0.44858310
9 0.08872019 0.37086707 0.31913522 0.08933508 0.49192829 0.44858383
10 0.08872024 0.37086727 0.31913539 0.08933513 0.49192855 0.44858407

Table 2: Convergence of non-classical results for nondimensional displacement components.

a=45 =90
Number of
Tteration Holq Holsz Holly Hollz
PP PP PP P
1 -0.05765540 -0.01167109 -0.08171989 -0.01202427
2 -0.05929164 -0.01200231 -0.08403908 -0.01236552
3 -0.05968992 -0.01208293 -0.08460360 -0.01244859
4 -0.05978890 -0.01210297 -0.08474389 -0.01246923
5 -0.05981361 -0.01210798 -0.08477891 -0.01247438
6 -0.05981979 -0.01210923 -0.08478766 -0.01247567
7 -0.05982134 -0.01210955 -0.08478985 -0.01247601
8 -0.05982173 -0.01210968 -0.08479043 -0.01247609
9 -0.05982182 -0.01210976 -0.08479056 -0.01247613
10 -0.05982185 -0.01210979 -0.08479061 -0.01247615

CONCLUSON

Thiswork presentsanon-classical continuum model
accounting for surface stress effects based on Gurtin-
Murdoch elasticity theory to analyze the elastic field
of nanofilms subjected to inclined point load. The
analysisis performed assuming both finite and infinite
thickness of layer. Selected numerical results are
presented to demonstrate the salient features of the
response of the layer to assess the influence of surface
stress effects. The governing equations are devel oped
for inclined point load with arbitrary value of angle of
loading. It is shown that close form analytical solution
can be obtained for the case of infinite thickness of the
layer. The present non-classical solution shows that
the surface elastic properties make the material stiffer
than the classical case through consideration of surface
stress effects.
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It isfound that in the lower depths of the layer, the
surface stress effects have more significant influence
on the displacement and stress profiles and have little
influence on the base of the layer. Also, it is shown
that by approaching the case of vertical point load (by

increasing the value of =), the influence of surface
stress effects is quiet strong compared to horizontal
point loading.
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