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ABSTRACT: The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated.
Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane
stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model
is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric
parameters such as beam lengths, width, thickness, gaps and size effect, we identify the static pull-in instability voltage.
Back propagation artificial neural network with three functions have been used for modeling the static pull-in instability
voltage of  the micro cantilever beam. The network has four inputs of length, width, gap and the ratio of height to scale
parameter of the beam as the independent process variables, and the output is static pull-in voltage of microbeam.
Numerical data, employed for training the network and capabilities of the model in predicting the pull-in instability
behavior has been verified. The output obtained from the neural network model is compared with numerical results, and
the amount of relative error has been calculated. Based on this verification error, it is shown that the back propagation
neural network has the average error of 6.36% in predicting pull-in voltage of the cantilever micro-beam.

Keywords: Artificial neural networks; Euler-Bernoulli; Modified couple stress theory; Nonlinear micro-beam; Static
pull-in instability.
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INTRODUCTION
Micro-electromechanical systems (MEMS) are

widely being used in today�s technology. So
investigating the problems referring to MEMS, owns a
great importance. One of the significant fields of study
is the stability analysis of the parametrically excited
systems. Parametrically excited micro-
electromechanical devices are ever increasingly being
used in radio, computer and laser engineering [1].
Parametric excitation occurs in a wide range of
mechanics, due to time dependent excitations,
especially periodic ones; some examples are columns
made of nonlinear elastic material, beams with a
harmonically variable length, parametrically excited
pendulums and so forth. Investigating stability
analysis of parametrically excited MEM systems is of
great importance. In 1995 Gasparini et al. [2] studied
on the transition between the stability and instability
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of a cantilevered beam exposed to a partially follower
load. Applying voltage difference between an electrode
and ground causes the electrode to deflect towards
the ground. At a critical voltage, which is known as a
pull-in voltage, the electrode becomes unstable and
pulls-in onto the substrate. The pull-in behavior of
MEMS actuators has been studied for over two decades
without considering the casimir force [3�5]. Osterberg
et al. [3, 4] investigated the pull-in parameters of the
beam-type and circular MEMS actuators using the
distributed parameter models. Sadeghian et al. [5]
applied the generalized differential quadrature method
to investigate the pull-in phenomena of micro-switches.
A comprehensive literature review on investigating
MEMS actuators can be found in Ref. [6]. Further
information about modeling pull-in instability of MEMS
has been presented in Ref. [7, 8]. The classical
continuum mechanics theories are not capable of
prediction and explanation of the size-dependent
behaviors which occur in micron- and sub-micron-scale
structures. However, some non-classical continuum
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theories such as higher-order gradient theories and
the couple stress theory have been developed such
that they are acceptably able to interpret the size-
dependencies. In the 1960s, some researchers such as
Koiter [9], Mindlin [10] and Toupin [11] introduced the
couple stress elasticity theory as a non-classic theory
capable to predict the size effects with the appearance
of two higher-order material constants in the
corresponding constitutive equations. In this theory,
beside the classical stress components acting on
elements of materials, the couple stress components,
as higher-order stresses, are also available which tend
to rotate the elements. Utilizing the couple stress theory,
some researchers investigated the size effects in some
problems [12].Employing the equilibrium equation of
moments of couples beside the classical equilibrium
equations of forces and moments of forces, a modified
couple stress theory introduced by Yang, Chong, Lam,
and Tong [13], with one higher-order material constant
in the constitutive equations. Recently, size-dependent
nonlinear Euler�Bernoulli and Timoshenko beams
modeled on the basis of the modified couple stress
theory have been developed by Xia et al. [14],   and
Asghari et al. [15], respectively. Rong et al. [16] present
an analytical method for pull-in analysis of clamped�
clamped multilayer beam. Their method is Rayleigh-
Ritz method and assumes one deflection shape
function. They derive the two governing equations by
enforcing the pull-in conditions that the first and
second order derivatives of the system energy
functional are zero. In their model, the pull-in voltage
and displacement are coupled in the two governing
equations.

This paper investigates the pull-in instability of
micro-beams with a curved ground electrode under the
action of electric field force within the framework of
von-Karman nonlinearity and the Euler�Bernoulli beam
theory. The static pull-in voltage instability of clamped-
clamped and cantilever micro-beam are obtained by
using MAPLE commercial software. The effects of
geometric parameters such as beam lengths, width,
thickness, gaps and size effect are discussed in detail
through a numerical study. The objective of this paper
is to establish a neural network model for estimating
the pull-in instability voltage of cantilever beams. More
specifically, back propagation neural network is used
to construct the pull-in instability voltage. Effective
parameters influencing pull-in voltage and their levels
of training were selected through preliminary
calculations carried out on instability pull-in voltage

of micro-beam. The network trained by the same
numerical data are then verified by some numerical
calculations different from those used in the training
phase, and the best model was selected based on the
criterion of having the least average values of
verification errors. To the authors� best knowledge, no
previous studies which cover all these issues are
available. To the authors� best knowledge, no previous
studies which cover all these issues are available.

EXPERIMENTAL
Preliminaries

In the modified couple stress theory, the strain
energy density u  of  a linear elastic isotropic material
in infinitesimal deformation is written as [17]:
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In which ij , ij , ijm and ij denote the
components of the symmetric part of stress tensor ,
the strain tensor  , the deviatoric part of the couple
stress tensor m and the symmetric part of the curvature
tensor  ,  respectively. Also, u  and  are the
displacement vector and the rotation vector. The two
Lame constants and the material length scale parameter
are represented by ,   and l , respectively. The Lame
constants are written in terms of the Young�s modulus
E and the Poisson�s ratio   as
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The components of the infinitesimal rotation vector

i  relate to the components of the displacement vector
field iu  as [18]:
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For an Euler�Bernoulli beam, the displacement field
can be expressed as:
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Where u is the axial displacement of the centroid of
sections, and w denotes the lateral deflection of the

beam. The parameter xw  / stands in the angle of

rotation (about the y-axis) of the beam cross-sections.
Assuming the above displacement field, after
deformation, the cross sections remain plane and
always perpendicular to the center line, without any
change in their shapes. It is noted that parameter z
represents the distance of a point on the section with
respect the axis parallel to y-direction passing through
the centroid.

Governing Equation of Motion
In this section, the governing equation and

corresponding classical and non-classical boundary
conditions of a nonlinear microbeam modeled on the
basis of the couple stress theory are derived. The
coordinate system and loading of an Euler�Bernoulli
beam has been depicted in Fig. 1. In this figure, F(x,t)
and G(x,t) refer to the intensity of the transverse
distributed force and the axial body force, respectively,
both as force per unit length.

It is noted that finite deflection w is permissible and
only it is needed that the slopes be very small. Hereafter,
we use Eq. (8) for the axial strain, instead of the
infinitesimal definition presented in Eq. (3). Substitution
of Eqs. (7) and (8) into (3)�(5) yields the non-zero
components.

Also, combination of Eqs. (6) and (7) gives [19]:
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Substitution of Eq. (9) into (5) yields the following
expression for the only non-zero components of the
symmetric curvature tensor:
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It is assumed that the components of strains,
rotations and their gradients are sufficiently small. By
neglecting the Poisson�s effect, the substitution of Eq.
(8) into Eq. (2) gives the following expressions for the
main components of the symmetric part of the stress
tensor in terms of the kinematic parameters:
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Where E denotes the elastic modulus. In order to
write the non-zero components of the deviatoric part
of the couple stress tensor in terms of the kinematic
parameters, one can substitute Eq. (10) into Eq. (4) to
get:
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Where  and l are shear modulus and the material
length scale parameter, respectively. To obtain the
governing equations, the kinetic energy of the beam T,
the beam strain energy due to bending and the change
of the stretch with respect to the initial
configuration bsU , and the increase in the stored energy
with respect to the initial configuration due to the
existence of initially axial load isU and finally the total
potential energy 

isbs UUU  are considered as
follows:
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 Fig. 1: An Euler�Bernoulli, loading and coordinate system.

By assuming small slopes in the beam after
deformation, the axial strain, i.e. the ratio of the
elongation of a material line element initially in the axial
direction of its initial length, can be approximately
expressed by the von-Karman strain as:
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Where 0N ,  I and  are the axial load, area moment
of inertia of the section about y� axis and the mass
density, respectively. The work done by the external
loads acting on the beam is also expressed as:

is the electrostatic force per unit length of the beam.

The electrostatic force enhanced with first order
fringing correction can be presented in the following
equation [20]:
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 mNC  is the
permittivity of vacuum, V is the applied voltage, g is
the initial gap between the movable and the ground
electrode and B is the width of the beam. For clamped-
clamped beam, the boundary conditions at the ends
are:
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For cantilever beam, the boundary conditions at the
ends are:
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Table 1 shows the geometrical parameters and
material properties of micro-beam.

(13c)

Where N� and V� represent the resultant axial and
transverse forces in a section caused by the classical
stress components acting on the section. The resultant
axial and transverse forces are work conjugate to u and
w, respectively. Also, hP� and hQ� are the higher-order
resultants in a section, caused by higher-order stresses
acting on the section. These two higher-order
resultants are work conjugate to

2)/(2/1/ xwxuxx  a n d 22 / xw  ,
respectively. The parameter M� is the resultant moment
in a section caused by the classical and higher-order
stress components. Now, the Hamilton principle can
be applied to determine the governing equation:
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Where  denotes the variation symbol. By applying

Eqs. (13) and (14), the governing equilibrium micro
beam is derived as:
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If in Eq. (15), N=0, then the model the of beam is
called the linear equation (linear model) without the
effect of geometric nonlinearity. The cross sectional
area and length of beam are A and L respectively. F(x,t)

Table 1: Geometrical parameters and material properties
of micro-beam

Materi al 
properties Geomet ri ca l dim ension s 

E(GPa)   )( mL   )( mB   )( mh   )( mg   

77 0.33 100-500 0.5-50 0.5-4 0-30 
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In the static case, we have 0
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Hence, Eq. (15) is reduced to:
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A uniform micro-beam has a rectangular cross
section with height h and width B, subjected to a given
electrostatic force per unit length. Let us consider the
following dimensionless parameters:
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 In the above equations, the non-dimensional
parameter,  is defined the size effect parameter. Also,
 is non-dimensional voltage parameter. The normalized
nonlinear governing equation of motion of the beam
can be written as [21]:
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Artificial neural networks
Artificial NNs are non-linear mapping systems with

a structure loosely based on principles observed in
biological nervous systems. In greatly simplified terms
as can be seen from Fig. 2, a typical real neuron has a
branching dendritic tree that collects signals from many
other neurons in a limited area; a cell body that
integrates collected signals and generates a response
signal (as well as manages metabolic functions); and a
long branching axon that distributes the response
through contacts with dendritic trees of many other
neurons. The response of each neuron is a relatively
simple non-linear function of its inputs and is largely
determined by the strengths of the connections from
its inputs. In spite of the relative simplicity of the
individual units, systems containing many neurons can
generate complex and interesting behaviours [22].

A network is specialized to implement different
functions by varying the connection topology and the
values of the connecting weights. Complex functions
can be implemented by connecting units together with
appropriate weights. In fact, it has been shown that a
sufficiently large network with an appropriate structure
and property chosen weights can approximate with
arbitrary accuracy any function satisfying certain broad
constraints. Usually, the processing units have
responses like (see Fig. 4).

 

Fig. 2: A biological nervous systems.

An ANN shown in Fig. 3 is very loosely based on
these ideas. In the most general terms, a NN consists
of large number of simple processors linked by
weighted connections. By analogy, the processing
nodes may be called neurons. Each node output
depends only on information that is locally available
at the node, either stored internally or arriving via the
weighted connections. Each unit receives inputs from
many other nodes and transmits its output to yet other
nodes. By itself, a single processing element is not
very powerful; it generates a scalar output with a single
numerical value, which is a simple non-linear function
of its inputs. The power of the system emerges from
the combination of many units in an appropriate way.

)(
i

iufy                                                           (24)

Where, iu are the output signals of hidden layer to
the output layer, )( iuf  is a simple non-linear function
such as the sigmoid, or logistic function. This unit
computes a weighted linear combination of its inputs
and passes this through the non-linearity to produce a
scalar output.

In general, it is a bounded non-decreasing non-linear
function; the logistic function is a common choice.
This model is, of course, a drastically simplified
approximation of real nervous systems. The intent is
to capture the major characteristics important in the
information processing functions of real networks
without varying too much about physical constraints

Fig. 3: A layered feed-forward artificial NN.

 
Fig. 4: an artificial neuron model.
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imposed by biology. The impressive advantages of NNs
are the capability of solving highly non-linear and
complex problems and the efficiency of processing
imprecise and noisy data. Mainly, there are three types
of training condition for NNs; namely supervised
training, graded training and self-organization training.
Supervised training, which is adopted in this study, can
be applied as:
(1) First, the dataset of the system, including input and
output values, is established;
����7KH�GDWDVHW�LV�QRUPDOL]HG�DFFRUGLQJ�WR�WKH�DOJRULWKP�

����7KHQ��WKH�DOJRULWKP�LV�UXQ�

(4) Finally, the desired output values corresponding to
the input used in test phase [23].

Back propagation neural network
Back propagation neural network (BPN), developed

by Rumelhart [24], is the most prevalent of the supervised
learning models of ANN. BPN used the gradient steepest
descent method to correct the weight of the
interconnectivity neuron. BPN easily solved the
interaction of processing elements by adding hidden
layers. In the learning process BPN, the interconnective
the weights are adjusted using an error convergence
technique to obtain a desired output for a given input.
In general, the error at the output layer in the BPN model
propagates backward to the input layer through the
hidden layer in the network to obtain the final desired
output. The gradient descent method is utilized to
calculate the weight of the network and adjusts the
weight of interconnectives to minimize the output error.
The formulas used in this algorithm are as follows:
1) Hidden layer calculation results:

 iii wxnet                                                                (25)

)( ii netfy                                                                   (26)

Where ix and iw are input data and weights of the
input data, respectively. f is activation function,
and iy is the result obtained from hidden layer..
2) Output layer calculation results:
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Where jkw are the weights of output layers, and kO
is result obtained from output layer.
3) Activation functions used in layers are logsig, tansig
and linear:
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(4) Errors made at the end of one cycle:

)1()( kkkkk ooote                                        (32)

ijkiii weyye  )1(                                         (33)

Where kt is result expected from output layer, ke is
an error occurred at output layer, and ie  is the error
occurred at hidden layer.
5) Weights can be changed using these calculated
error values according to Eqs. (34) and (35).
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Where ijw are the weights of the output layer..

jkw and ijw  are correction made in weights at
the previous calculation.  is learning ratio, and 
is momentum term, that is used to adjust the weights.
In this paper, 9.0  and 9.0 , are used.
2) Square error, occurred in one cycle, can be found
by Eq. (36).

2
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The completion of training the BPN, relative error
(RE) for each data and mean relative error (MRE) for
all data is calculated according to Eqs. (37) and (38),
respectively.
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 Where n is the number of data [25].

RESULTS AND DISCUSSION
Static pull-in instability analysis

When the applied voltage between the two
electrodes increases beyond a critical value, the
electric field force cannot be balanced by the elastic
restoring force of the movable electrode and the
system collapses onto the ground electrode. The
voltage and deflection at this state are known as the
pull-in voltage and pull-in deflection, which are of
utmost importance in the design of MEMS devices.
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The pull-in voltage of cantilever and fixed-fixed beams
is an important variable for analysis and design of micro-
switches and other micro-devices. Typically, the pull-
in voltage is a function of geometry variable such as
length, width, and thickness of the beam and the gap
between the beam and the ground plane. To study the
instability of the nano-actuator, Eq. (23) is solved
numerically and simulated. To highlight the differences
between linear and nonlinear geometry model results
of Euler-Bernoulli micro beam, we first compare the pull-
in voltage for a fixed-fixed and cantilever beams with a
length of 100 m , a width of 50, a thickness of 1 and
two gap lengths. For a small gap length of 0.5 (shown
in Fig. 5), we observe that linear and nonlinear geometry
model gives identical results.

 However, for a large gap length of 2 m  (shown in
Fig. 6), we observe that pull-in voltage for fixed-fixed
beam is significantly different.

As shown in Fig. 7, the difference in the pull-in
voltage is even larger when a gap length of 4.5 m is
considered. In Figs. 8, 9 and 10, pull-in voltage of fixed-
free beams are shown. It is evident that pull-in voltage

of fixed-fixed beam is larger than fixed-free beam. More
extensive studies for the cantilever beam with lengths
varying from 100 to 500 and thicknesses varying from
1 to 4are shown in Figs. 11 and 12. The gap lengths
used vary from 5 to 30. For gaps smaller than 15 and
lengths larger than 350, we observe that the pull-in
voltage obtained with linear and nonlinear geometry
model are very close. However, for large gaps (such as
the 15 case) and for short beams (such as the 100 case),
we observe that the difference in the pull-in voltage
obtained with linear and nonlinear geometry model is
not negligible. In Figs. 13-14, we investigate the fixed-
fixed beam example with lengths varying from 100 to
500 and thickness varying from 0.5 to 2. We observe
that, for all cases, the pull-in voltage obtained with linear
model are in significant error (larger than 5.5%) compared
to the pull-in voltages obtained with nonlinear geometry
model. When the gap increase, the error in the pull-in
voltage with linear model increase significantly.
Furthermore, contrary to the case of cantilever beams,
the thickness has a significant effect on the error in the
pull-in voltages.

Fig. 6: Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a gap 2 m .

 
Fig. 5: Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a gap 0.5 m .
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Fig. 7: Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a gap 4.5 m .

Fig. 8: Comparison of linear and nonlinear geometry model results for a fixed-free beam with a gap 0.5 m .

M. Heidari

 

 

Fig. 9: Comparison of linear and nonlinear geometry model results for a fixed-free beam with a gap 2 m .
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Fig. 11: Gap vs. pull-in voltage for cantilever beams with a thickness of 1 m . For length=100 m , the difference in pull-in
voltage between linear and nonlinear geometry model is significant when the gap is larger than 15 m . For a length larger

than 350 m , the pull-in voltages obtained with linear and nonlinear geometry model are identical.

Fig. 10: Comparison of linear and nonlinear geometry model results for a fixed-free beam with a gap 4.5 m .
 

 

Fig. 12: Gap vs. pull-in voltage for cantilever beams with a thickness of 4 m . For length=100 m , the difference in pull-in
voltage between linear and nonlinear geometry model is significant when the gap is larger than 15 m . For a length larger

than 350 m , the pull-in voltages obtained with linear and nonlinear geometry model are identical.
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Fig. 13: Gap vs. pull-in voltage for fixed-fixed beams with a thickness of 0.5 m . Observe the large difference in pull-in
voltage obtained from linear and nonlinear geometry model of beam.

Fig. 14: Gap vs. pull-in voltage for fixed-fixed beams with a thickness of 2 m .

M. Heidari

 

 

The thinner the beam, the larger the error. Another
observation is that the length of the beam has little effect
on the error in the pull-in voltage. This observation is
also different from the case of cantilever beams. From
the results, it is clear the linear model is generally not
valid for the fixed-fixed beams case, except when the
gap is very small, such as the 0.5 case as shown in Fig.
5. These figures represent that the size effect increases
the pull-in voltage of the nano-actuators. Fig. 15 shows
the pull-in voltage vs. size effect for the fixed-fixed beam
with gap 2.5.

Modeling of Static Pull-in Instability Voltage of Cantilever
Beam Using Back Propagation Neural Network

Modeling of pull-in instability of micro-beam with
BP neural network is composed of two stages: training
and testing of the networks with numerical data. The

training data consisted of values for beam length (L),
gap (g), width of beam (b) and (h/l), and the

corresponding static pull-in instability voltage ( PIV ).

total 120 such data sets were used, of which 110 were
selected randomly and used for training purposes whilst
the remaining 10 data sets were presented to the trained
networks as new application data for verification
(testing) purposes. Thus, the networks were evaluated
using data that had not been used for training. Training/
Testing pattern vectors are formed, each formed with
an input condition vector, and the corresponding target
vector. Mapping each term to a value between -1 and 1
using the following linear mapping formula:

min
minmax

minmaxmin
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where, N : normalized value of the real variable;
1min N  and 1max N : minimum and maximum

values of normalization, respectively; R : real value of
the variable; minR  and maxR : minimum and maximum
values of the real variable, respectively. These
normalized data were used as the inputs and output to
train the ANN. In other words, the network has four
inputs of beam length (L), gap (g), width of beam (b)
and (h/l) ratio and one output of static pull-in voltage
( PIV ). Fig. 16 shows the general network topology for
modeling the process. Table 2 shows 10 numerical data
sets, have been used for verifying or testing network
capabilities in modeling the process.

Therefore, the general network structure is supposed
to be 4-n-1, which implies 4 neurons in the input layer,
n neurons in the hidden layer, and 1 neuron in the
output layer. Then, by varying the number of hidden
neurons, different network configurations are trained,
and their performances are checked. For training
problem, equal learning rate and momentum constant
of 9.0   were used [25]. Also, error stopping
criterion was set at E=0.01, which means training
epochs continued until the mean square error fell
beneath this value.

BP Neural Network Model
The size of hidden layer(s) is one of the most

important considerations when solving actual problems
using multi-layer feed-forward network. However, it has
been shown that BP neural network with one hidden

layer can uniformly approximate any continuous
function to any desired degree of accuracy given an
adequate number of neurons in the hidden layer and
the correct interconnection weights [26]. Therefore, one
hidden layer was adopted for the BP model. To determin
the number of neurons in the hidden layer, a procedure
of trail and error approach needs to be done. As such,
attempts have been made to study the network
performance with a different number of hidden neurons.
Hence, a number of candidate networks are constructed,
each of trained separately, and the �best� network were
selected based on the accuracy of the predictions in
the testing phase. It should be noted that if the number
of hidden neurons is too large, the ANN might be over-
trained giving spurious values in the testing phase. If
too few neurons are selected, the function mapping
might not be accomplished due to under-training. Three
functions, namely newelm, newff and newcf [27] have
been used for creating of BP networks. Then, by
varying the number of hidden neurons, different
network configurations are trained, and their
performances are checked. The results are shown in
Table 3. Both the required iteration numbers and
mapping performances were examined for these
networks. As the error criterion for all networks was
the same, their performances are comparable. As a
result, from Table 3, the best network structure of BP
model is picked to have 8 neurons in the hidden layer
with the average verification errors of 6.36% in
predicting PIV by newelm function.

Fig. 15: Pull-in voltage vs. size effect for fixed-fixed beam with gap 2.5 m , a thickness of 1 m , length 300 m  and
width 0.5 m , for nonlinear geometry model.
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Table 3:  The effects of different number of hidden neurons on the BP network performance.

N o. of  
h idde n 

ne urons 
E poch  A ve ra ge  er ror  in  PIV  (% )  

w it h  new el m  f uncti on 

A vera ge e rr or  in  PIV  (% ) 

w ith  n ew cf  functi on 

A vera ge e rr or  in  PIV  (% ) 

w it h  new f f f unc tion  

4  18 91 4 1 2 .31  1 0. 27  1 2.3 0 

5  4 97 0 1 4 .38  1 8. 38  2 0.1 9 

6  1 78 3 8. 19 1 1. 65  1 2.7 5 

7  3 98 4 9. 72 9.3 9 1 1.1 7 

8  1 88 4 6. 36 8.2 8 1 0.1 4 

9  2 77 0 1 3 .39  1 1. 86  1 9.9 8 

1 0 2 68 3 1 1 .67  1 6. 40  1 5.4 8 
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Fig. 16: General ANN topology.

Table 2: Beam geometry and pull-in voltage for
verification analysis.

T e st  
N o . 

L  
(µ m )  

b  
(µ m )  lh /  

g  
(µm )  

P IV
( vo lt )  

1  7 5  0 .5 4  0 .5  0 .1 7 9  

2  1 0 0  5 6  1  2 .4 4  

3  1 2 5  1 0  8  1 .5  7 .3 1  

4  1 5 0  2 0  1 0  2  1 6 .8 2  

5  1 7 5  2 5  1 2  2 .5  2 6 .7 8  

6  2 0 0  3 0  1 4  3  4 0 .2 7  

7  2 2 5  3 5  1 6  3 .5  5 3 .8 4  

8  2 5 0  4 0  1 8  4  6 8 .0 1  

9  2 7 5  4 5  2 0  4 .5  8 4 .5 3  

1 0  3 0 0  5 0  2 2  5  1 0 3 .6 2  

Table 4 shows the comparison of calculated and
predicted values for static pull-in voltage in verification
cases. After 1884 epochs, the MSE between the desired
and actual outputs becomes less than 0.01. At the
beginning of the training, the output from the network
is far from the target value. However, the output slowly
and gradually converges to the target value with more

epochs and the network learns the input/output relation
of the training samples. Fig. 17 shows the pull-in voltage
evaluated by the modified couple stress theory respect
to length of the beam and with h/l = 4, g=1.05 m ,
b=50 m  and h=2.94 . The pull-in voltage of the
micro-cantilever versus parameter h/l for b/g=50 is
depicted in Fig. 18, with three BP functions.

Table 4: Comparison of PIV calculated and predicted by the BP neural network model with three functions.

Test  
No. 

 

PIV (volt) PIV (vol t) PIV (volt ) 

Calculated 
BP model  
(newelm) 

Error 
(%) Calculated 

BP m odel 
(newff) 

Error 
(%) Calculated 

BP mod el 
(n ewcf) 

Error 
(%) 

1 0.179 0.190 6.56 0.179 0.191 7.12 0 .1 79 0.193 8.29 
2 2.44 2.61 7.28 2.44 2 .5 2 3.39 2 .44 2.59 6.28 
3 7.31 7.32 0.16 7.31 7 .5 4 3.16 7 .31 7.70 5.39 
4 16.82 19.21 14.24 16.82 18.29 8.75 1 6.82 19.21 14.24 
5 26.78 28.22 5.39 26.78 28.16 5.19 2 6.78 28.76 7.41 
6 40.27 42.17 4.74 40.27 46.03 14.31 4 0.27 43.99 9.25 
7 53.84 57.13 6.12 53.84 57.49 6.79 5 3.84 57.96 7.67 
8 68.01 71.60 5.29 68.01 78.39 15.27 6 8.01 82.14 20.78 
9 84.53 89.39 5.76 84.53 86.71 2.59 8 4.53 92.51 9.45 

10 103.62 112.03 8.12 103.62 1 20.53 16.32 103.62 116.74 12.67 
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Fig. 17: Comparing the theoretical and BP neural networks pull-in voltages for silicon 110.

Fig. 18: Comparing of pull-in voltage of the micro-cantilever versus parameter h/l and b/g=50 with BP models.

increasing of gap length, the pull-in voltage is
significantly increased. For both fixed-fixed and
cantilever beams by increasing of thickness of beams,
the pull-in voltage is significantly increased. For both
fixed-fixed and cantilever beams by increasing of
length of beams, the pull-in voltage is significantly
decreased. By using modified couple stress theory, it
is found that the dimensionless pull-in voltage of
MEMS increases linearly due to the size effect. This
emphasizes the importance of size effect consideration
in design and analysis of MEMS. When the ratio of
h/l increases, the pull-in voltage predicted by modified
couple stress theory and ANN is constant
approximately.  The conclusion above indicates that
the geometry of the beam has significant influences
on the electro-static characteristics of micro-beams
that can be designed to tailor for the desired
performance in different MEMS applications.

 

CONCLUSION
The primary contributions of the paper are

summarized as follows. The BP neural network is
capable of constructing model using only numerical
data, describing the static pull-in instability behavior.
The results show that newelm function is more accurate
than newff and newcf functions. Also the Levenberg-
Marquardt training is faster than other training
methods. For cantilever beams, length has a significant
effect on the error in pull-in voltages, while for fixed-
fixed beams, the length has little effect on the error. On
the other hand, for fixed-fixed beams, thickness has
significant effect on the error in pull-in voltage, while
for cantilever beams it has little effect. The static pull-
in instability voltage of clamped�clamped and
cantilever beam are compared. For both clamped�
clamped and cantilever beams, the pull-in voltage in
nonlinear geometry beam model is bigger than linear
model. For both fixed-fixed and cantilever beams by



Int. J. Nano Dimens., 6(5): 487-500, 2015 (Special Issue for NCNC, Dec. 2014, IRAN)

500

microscale beams: Static bending, post buckling and free
vibration. Int. J. Eng. Sci. 48: 2044-2053.

[15] Asghari M., Rahaeifard M., Kahrobaiyan M. H., Ahmadian
M. T., (2011), On the size-dependent behavior of
functionally graded micro-beams. Mater. Design. 32: 1435-
1443.

[16] Rong H., Huang Q. A., Nie M., Li W.,(2004),  An analytical
model for pull-in voltage of clamped�clamped multilayer
beams. Sens. Actuators A. 116: 15-21.

[17] Yang F., Chong A. C. M., Lam D. C. C., Tong P., (2002),
Couple stress based strain gradient theory for elasticity. Int.
J. Solids and Struc. 39: 2731-2743.

[18] Shengli K., Shenjie Z., Zhifeng N., Kai W., (2011), The
size-dependent natural frequency of Bernoulli�Euler micro-
beams. J. Eng. Sci. 46: 427-437.

[19] Ma H. M., Gao X. L., Reddy J. N., (2008), A microstructure-
dependent Timoshenko beam model based on a modified
couple stress theory. J. Mech. and Physics of Solids. 56:
3379�3391.

[20] Gupta R. K., (1997), Electrostatic pull-in test structure design
for in-situ mechanical property measurements of
microelectromechanical systems. Ph.D. Dissertation,
Massachusetts Institute of Technology (MIT), Cambridge, MA.

[21] Zhao J., Zhou S., Wanga B., Wang X., (2012), Nonlinear
microbeam model based on strain gradient theory. Appl.
Mathemat. Modell. 36: 2674-2686.

[22] Freeman J. A., Skapura D. M., (1992), Neural networks:
algorithms, applications, and programming techniques.
Addision-Wesley.

[23] Gao D., Kinouchi Y., Ito K., Zhao Z., (2005), Neural
networks for event extraction from time series: a back
propagation algorithm approach. Future Gener. Comp. Sys.
21: 1096-1105.

[24] Rumelhart D. E., Hinton G. E., Williams R. J., (1986),
Learning representations by back propagating error. Nature.
323: 533-536.

[25] Zhang H., Wei W., Mingchen Y., (2012), Boundedness
and convergence of batch back-propagation algorithm with
penalty for feedforward neural networks. Neurocomputing.
89: 141-146.

[26] Hongmei S., Gaofeng Z., (2011), Convergence analysis
of a back-propagation algorithm with adaptive momentum.
Neurocomputing. 74: 749-752.

[27] Demuth H., Beale M., (2001), Matlab Neural Networks
Toolbox, User�s Guide, The Math Works, Inc., http://

www.mathworks.com.

REFERENCES
[1] Khatami I., Pashai M. H., Tolou N., (2008), Comparative

vibration analysis of a parametrically   nonlinear excited
oscillator using HPM and numerical method. Mathemat.
Problems in Eng. 2008: 1-11.

[2] Gasparini A. M., Saetta A. V., Vitaliani R. V., (1995), on the
stability and instability regions of non-conservative
continuous system under partially follower forces. Comput.
Meth. Appl. Mech. Eng. 124: 63-78.

[3] Osterberg P. M., Senturia S. D., (1997), M-TEST: A test
chip for MEMS material property measurements using
electrostatically actuated test structures. J.
Microelectromech. Syst. 6: 107-118.

[4] Osterberg P. M., Gupta R. K., Gilbert J. R., Senturia S. D.,
(1994), Quantitative models for the measurement of residual
stress, poisson ratio and young�s modulus using electrostatic
pull-in of beams and diaphragms. Proceedings of the Solid-
State Sensor and Actuator Workshop. Hilton Head, SC.

[5] Sadeghian H., Rezazadeh G., Osterberg P., (2007), Application
of the generalized differential quadrature method to the study
of pull-in phenomena of MEMS switches. IEEE/ASME J.
Micro Electro Mech. Sys. 16: 1334-1340.

[6] Salekdeh Y. A., Koochi A., Beni Y. T., Abadyan M., (2012),
Modeling effect of three nano-scale physical phenomena
on instability voltage of multi-layer MEMS/NEMS: Material
size dependency, van der waals force and non-classic support
conditions. Trends in Appl. Sci. Res. 7: 1-17.

[7] Batra R. C., Porfiri M., Spinello D., (2007), Review of
modeling electrostatically actuated  microelectromechanical
systems. Smart Mater. Struct. 16: R23-R31.

[8] Lin W. H., Zhao Y. P., (2008), Pull-in instability of micro-
switch actuators: Model review. Int. J. Nonlinear Sci. Numer.
Simulation. 9: 175-184.

[9] Koiter W. T., (1964), Couple-stresses in the theory of
elasticity: I and II. Proceed. Koninklijke Nederlandse
Akademie van Wetenschappen Series B. 6717-6744.

[10] Mindlin R. D., Tiersten H. F., (1962), Effects of couple-
stresses in linear elasticity. Archive for Rational Mech.
Analysis. 11: 415-448.

[11] Toupin R. A., (1962), Elastic materials with couple-stresses.
Archive for Rational Mech. Analysis. 11: 385�414.

[12] Anthoine A., (2000), Effect of couple-stresses on the
elastic bending of beams. Int. J. Solids and Struc. 37: 1003-
1018.

[13] Yang F., Chong A. C. M., Lam D. C. C., Tong P., (2002),
Couple stress based strain gradient theory for elasticity. Int.
J. Solids and Struc. 39: 2731-2743.

[14] Xia W., Wang L., Yin L., (2010), Nonlinear non-classical

M. Heidari

How to cite this article: (Vancouver style)

Heidari M., (2015), Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation
artificial neural network. Int. J. Nano Dimens. 6(5): 487-500.
DOI: 10.7508/ijnd.2015.05.006
URL: http://ijnd.ir/article_15293_1117.html

http://
http://www.mathworks.com.

