[1] Gallagher P. M., (2000), Passive site remediation for mitigation of liquefaction risk. Ph.D Dissertation, Virginia Polytech. Inst. and State Uni., Blacksburg.
[2] Gallagher P. M., Koch, A. J., (2003), Model testing of passive site stabilization: A new technique. Proc.3rd Int. Conf. on Grouting and Ground Treatment, New Orleans2: 1478-1490.
[3] Yonekura, R., Miwa M., (1993), Fundamental properties of Sodium Silicate based grout. Proc.11th Southeast Asia Geotech. Conf. Singapore. 439-444.
[4] Whang, J. M., (1995), Chemical Based Barrier Materials. In Assessment of Barrier Containment Technologies for Environmental Remediation Applications ( Rumer RR, Mitchel Jk, Editors). Section 9, Springfield, VA: National Technical Information Service.
[5] Iler R. K., (1979), The Chemistry of Silica: Solubility, Polymerization Colloid and Surface Properties, and Biochemist Try. New York : Wiley. [6] Yonekura R., Kaga M., (1992), Current chemical grout engineering in Japan. In R.H. Borden (Ed.), Grouting, soil improvement and geosynthetics. (725-736). New York: ASCE.
[7] Persoff P., Apps J., Moridis G., Whang J. M., (1999), Effect of dilution and contaminants on sand grouted with colloidal silica. J. Geotech. Geoenvironment. Engng. 125: 461-469.
[8] Towhata I., Kabashima Y., (2001), Mitigation of seismically-induced deformation of loose sandy foundation by uniform permeation grouting. Proc. Earthquake Geotech. Engng. Satellite Conf., 15th Int.Conf. of Soil Mech. And Geotech. Enginng, Istanbul. 313-318.
[9] Gallagher P. M., Mitchell J. K., (2002), Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dynamics and Earthq. Engng. 22: 1017-1026.
[10] Liao H. J., Huang C. C., Chao B. S., (2003), Liquefaction resistance of a colloidal silica grouted sand. In L. F. Johnsen et al. (Ed.), Grouting and grout and deep mixing (1305-1313). Proceeding of the Third International Conference. New Orleans, L. A. Reston, V.A: ASCE.
[11] Diaz-Rodriguez J. A., Antonio-Izarras V. M., Bandini P., Lopez-Molina J. A., (2008), Cyclic strength of natural liquefiable sand stabilized with colloidal silica grout. Canadian Geotech. J. 45: 1345-1355.
[12] Gallagher P. M., Finstere S., (2004), Physical and numerical model of colloidal silica injection for passive site stabilization. Vadose Zone J. 3: 917-925.
[13] Gallagher P. M., Pamuk A., Abdun T., (2007), Stabilization of liquefiable soils using colloidal silica. J. Mater. Civil Eng. 33: 33-40.
[14] Pamuk A., Gallagher P. M., Zimmie T. F., (2007), Remediation of piled foundations against lateral spreading by passive site stabilization technique. Soil Dynamic and Earthq. Eng. 27: 864.874.
[15] Gallagher P. M., Lin Y., (2009). Colloidal silica transport through liquefiable porous media. J. Geotech. Geoenvironmen. Engng. 135: 1702.1712.
[16] Hamderi M., (2010), Pilot scale modeling of colloidal silica delivery to liquefiable sand. Ph.D dissertation, Drexel University. USA.
[17] Moridis G. J., Apps J., Persoff P., Myer L., Muller S., Yen P., Pruess K., (1996), Afield test of a waste containment technology using a new generation of injectable barrier liquids. Spectrum 96, Seattle, WA.
[18] Noll M. R., Bartlett C., Dochat T. M., (1992), In situ permeability reduction andchemical fixation using colloidal silica. Proceedings of the Sixth National Outdoor Action Conference (443.57). Las Vegas, NV.
[19] Gallagher P. M., Conlee C. T., Kyle M., (2007). Full scale testing of colloidal silica grouting for mitigation of liquefaction risk. J. Geotech. Geoenvironment. Engng. 133: 186-196.
[20] Hamderi M., Gallagher P. M., (2013), An optimization study on the delivery distance of colloidal silica. Scientif. Res. Essays. 8: 1314-1323
[21] Hamderi M., Gallagher P. M., Lin Y., (2014), Numerical model for colloidal silica injected column tests. Vadose Zone. J. 13: 138-143.
[22] Seed H. B., Idriss I. M., (1982), Ground motions and soil liquefaction during earthquakes. Berkeley, CA: Earthquake Engineering Research Institute.