Synthesis of electron-poor N-Vinylimidazole derivatives catalyzed by Silica nanoparticles under solvent-free conditions

A. Ramazani^{*, 1}; A. Farshadi²; A. Mahyari³; F. Sadri⁴; S. Woo Joo⁵; P. Azimzadeh Asiabi⁶; S. Taghavi F**a**dood¹; N. Dayyani¹; H. Ahankar^{1,7}

¹Department of Chemistry, University of Zanjan, P O Box 45195-313, Zanjan, Iran ²Department of Chemistry, Islamshahr Branch, Islamic Azad University, Tehran, Iran. ³Young Researchers Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran. ⁴Department of Chemistry, Payame Noor University, P O BOX 19395-4697 Tehran, Iran ⁵School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea. ⁶Nuclear Science and Technology Research Institute, P.O Box 11365-3486, Tehran, Iran ⁷Department of Chemistry, Abhar Branch, Islamic Azad University, P O Box 22, Abhar, Iran

Received 01 April 2015; revised 27 August 2015; accepted 16 September 2015; available online 02 November 2015

ABSTRACT: Protonation of the highly reactive 1:1 intermediates, produced in the reaction between triphenylphosphine and acetylenic esters, by NH-acids such as azathioprine, imidazole or theophylline leads to the formation of vinyltriphenylphosphonium salts, which undergo a Michael addition reaction with a conjugate base to produce phosphorus ylides. Silica nanoparticles (silica NPs were prepared by thermal decomposition of rice hulls) was found to catalyze the conversion of the phosphorus ylides to electron-poor *N*-vinyl imidazoles in solvent-free conditions under thermal (90 °C, 30 min) conditions. It may be speculated that the polar amphoteric surface (OH groups of the silica NPs) facilitates the interaction of adsorbed weak acidic and basic components due to stabilization of the corresponding transition states and intermediates by H-bonding. It seems that the interactions with the neighboring silanol groups are plausible factors in the rate acceleration. Participation of two proximate silanol groups (one as an H-bond acceptor) in the reaction mechanism also seems to be plausible.

Keywords: Acetylenic Esters; N-Vinyl Imidazole; Phosphorus ylides; Silica nanoparticles; Solvent-free conditions; Vinyltriphenylphosphonium salts.

INTRODUCTION

Imidazole chemistry currently attracts considerable attention, where the imidazole derivatives are widely applied as *N*-ligand coordinating transitionmetals [1, 2]. The application of imidazoles in medicinal chemistry [3] or chemistry of natural products/alkaloids [4, 5] or of 1,3-disubstituted imidazole salts as ionic liquids [6, 7] are also well known.

1-Vinylimidazole is employed as a copolymer in the production of cationic polymers for various uses. Alkylimidazoles are used as hardeners for epoxy resins

 Corresponding Author: Ali Ramazani Email: aliramazani@gmail.com
 Tel.: (+98) 24 3305 2572
 Fax: (+98) 24 3305 2477 and for polyurethanes [8]. Less important uses for alkyland arylimidazoles include photography and dyes [8].

In recent years, nanoparticles (NPs) have attracted tremendous attention in catalysis because of their improved efficiency under mild and environmentally benign conditions in the context of ecological (Green) synthesis [9, 10]. Due to their enormously large and highly reactive surface area, NPs have potential to exhibit superior catalytic activity in comparison to bulk counterparts [11, 12].

-Additions of nucleophiles to the vinyl group of vinylic phosphonium salts leading to the formation of new alkylidenephosphoranes have attracted much attention as a very convenient and synthetically useful method in organic synthesis [13]. Organophosphorus compounds have been extensively used in organic synthesis as useful reagents as well as ligands of a number of transition metal catalysts [14]. Phosphorus ylides are a class of a special type of zwitterions, which bear strongly nucleophilic electron-rich carbanions. The electron distribution around the $P^+-C^{"}$ bond and its consequent chemical implications had been probed and assessed through theoretical, spectroscopic, and crystallographic investigations [13-16]. In recent years, we have established a one-pot method for the synthesis of stabilized phosphorus ylides [17–28].

In this article, we wish to report a simple and practical procedure for the preparation of electron-poor *N*-vinyl imidazole derivatives from acetylenic esters and azathioprine or imidazole or theophylline and triphenylphosphine in the presence of silica nanoparticles (silica NPs, ca. 42 nm) in high yields.

EXPERIMENTAL

Starting materials and solvents were obtained from Merck (Germany) and Fluka (Switzerland) and were used without further purification. The methods used to follow the reactions are TLC and NMR, which indicated that there is no side product. M.P. were measured with an Electrothermal 9100 apparatus and are uncorrected. IR spectra were recorded on a Shimadzu IR-460 spectrometer. ¹H- and ¹³C-NMR spectra were measured (CDCl₃) with a BRUKER DRX-250 AVANCE spectrometer at 250.0 and 62.5 MHz, respectively. Flash chromatography columns were prepared with Merck silica gel powder.

A heterogeneous mixture of acetylenic ester (1 mmol) and silica nanoparticles (0.1 g), were added to a heterogeneous mixture of triphenylphosphine (1 mmol), imidazole derivative (1 mmol), and silica nanoparticles (0.2 g), then the heterogeneous mixture were heated (without stirring) in an oven at 90ÚC for 30 min. After completion of the reaction, flash column chromatography (petroleum ether/ethyl acetate) of the residue gave *N*-vinyl imidazole Derivative 4. The structures of the isolated products were confirmed by IR, ¹H, and ¹³C NMR spectroscopy.

Selected data for methyl-2-{6-[(1- methyl- 4- nitro-1H-imidazol-5-yl)sulfanil]-7H-purin-7-yl} acrylate (4a).

Viscouse yellow oil; Yield: 80%. IR(neat)($_{max}$, cm⁻¹): 3123, 2923, 1738, 1646 and 1192. ¹H NMR (CDCl₃) $_{\rm H}$: 3.76 (s, 3 H, CH₃), 3.89 (s, 3 H, OCH₃), 6.42 and 6.75 (2 d, 2H, $^{2}J_{HH}$ = 1.0 Hz, =CH₂), 7.76 and 8.24 (2 s, 2 H, CH=N

of imidazole), 8.59 (s, 1 H, CH=N of pyrimidine). 13 C NMR (CDCl₃) _c: 33.21 (CH₃), 53.36 (OCH₃), 125.19 (=CH₂), 138.03 and 143.94 (2 CH of imidazole), 152.54 (CH of pyrimidine), 116.51, 130.57, 138.03, 150.35 and 157.04 (6 C), 162.24 (C=O of ester).

Selected data for ethyl (Z)-2-{6-[(1- methyl- 4nitro-1H-imidazol-5-yl)sulfanil]-7H-purin-7-yl}-3phenyl-2-propenoate (4b).

Viscouse yellow oil; Yield: 87%. IR (Neat) ($_{max}$, cm⁻¹): 3115, 2930, 1723, 1646, 1269 and 1207. ¹H NMR (CDCl₃) $_{H}$: 1.31 (t, 3 H, ${}^{3}J_{HH} = 7.0$ Hz, CH₃ of OEt), 3.75 (s, 3 H, CH₃), 4.33 (q, 2 H, ${}^{3}J_{HH} = 7.0$ Hz, OCH₂ of OEt), 6.90 (d, 2 H, ${}^{3}J_{HH} = 7.3$ Hz, arom), 7.22-7.37 (m, 5 H, arom), 7.76 (s, 1 H, =CH), 7.90 and 8.16 (2 s, 2 H, CH=N of imidazole), 8.53 (s, 1 H, CH=N of pyrimidine). ¹³C NMR (CDCl₃) $_{C}$: 14.17 and 33.29 (2 CH₃), 62.58 (OCH₂ of OEt), 121.29 (CH of vinyl), 129.29, 129.80 and 130.83 (5 CH of Ph), 141.13 and 144.07 (2 CH of imidazole), 152.76 (CH of pyrimidine), 116.87, 129.29, 131.49, 138.00, 150.35 and 157.01 (7 C), 163.00 (C=O of ester).

Selected Data for Methyl 2-(1,3-dimethyl-2,6dioxo-1,3,3,6-tetrahydro-7H-purin-7-yl) acrylate (4c).

Colorless crystals. Yield: 97%. m.p. 160-163 °C. IR (KBr) ($_{max}$, cm⁻¹): 2953, 1707, 1669, 1453, 1230. ¹HNMR (CDCl₃): $_{H}$ = 3.36, 3.60 (2s, 6H, 2CH₃); 3.86 (1s, 3H, OCH₃); 5.99-6.51 (d of d, 2H, $^{2}J_{HH}$ = 1Hz, =CH₂); 7.63 (1s, 1H, imidazol). ¹³C NMR (CDCl₃): $_{C}$ = 28.07 and 29.66 (2CH₃); 53.23 (OCH₃); 107.94, 133.39 and 148.74 (3C); 123.69 (=CH₂); 140.95 (CH imidazol); 151.60 and 154.47 (2C=O of amide); 162.33(C=O of ester).

Selected data for Ethyl 2-(1,3-dimethyl-2,6-dioxo-1,3,3,6-tetrahydro-7H-purin-7-yl) acrylate (4d).

Colorless crystals. Yield: 95%; m.p.143-146 °C. IR (KBr) ($_{max}$, cm⁻¹): 2984, 1715, 1676, 1453, 1230. ¹H NMR (CDCl₃): $_{H}$ =1.27 (1t, 3H, $^{3}J_{HH}$ = 7.25 Hz, CH₃); 3.38, 3.62 (2s, 6H, 2CH₃); 4.29 (q, 2H, $^{3}J_{HH}$ = 7 Hz, OCH₂); 5.99-6.52 (d of d, 2H, $^{2}J_{HH}$ = 1Hz, =CH₂); 7.63 (1s, 1H, imidazol). ¹³C NMR (CDCl₃): $_{C}$ =14.04, 28.07 and 29.66 (3CH₃); 62.55 (OCH₂); 107.97, 133.62 and 148.73 (3C); 123.42 (=CH₂); 141 (CH imidazol); 151.64 and 154.46 (2C=O of amide); 161.82 (C=O of ester).

Selected data for ethyl (Z,E)-2-(1,3-dimethyl-2,6dioxo-1,3,3,6-tetrahydro-7H-purin-7-yl)-3-phenyl-2peropenoate (4e).

Colorless crystals. Yield: 97 %; m.p: 145-148 °C. IR (KBr) (_____, cm⁻¹): 2946, 1707, 1661, 1453, 1269. ¹HNMR $(\text{CDCl}_3, \%E = 40 \text{ and } \%Z = 60) \text{ for } Z:_{H} = 1.28 (1t, 3H,$ ${}^{3}J_{HH} = 7$ Hz, CH₃); 3.31 and 3.58 (2s, 6H, 2CH₃); 4.29 (q, 2H, ${}^{3}J_{HH} = 7$ Hz, OCH₂); 6.93(d, 2H, ${}^{3}J_{HH} = 7.25$ Hz, arom); 7.20-7.29 (m, 3H, arom); 7.40 (1s, 1H, imidazol); 7.89 (1s, 1H, =CH); 13 C NMR (CDCl₃) for Z: $_{C}$ =14.13, 27.95 and 29.91 (3CH₃); 62.28 (OCH₂); 129.11, 129.70, 130.90, 138.66 and 141.19 (7CH); 107.39, 123.77, 131.06 and 148.68 (5C); 151.64 and 154.24 (2C=O of amide); 163.10 (C=O of ester). ¹H NMR (CDCl₂, % E = 40 and % Z = 60) for E: $_{H}$ =1.59 (1t, 3H, $^{3}J_{HH}$ = 7.25 Hz, CH₃); 3.40 and 3.65 (2s, 6H, 2CH₃); 4.25 (q, 2H, ${}^{3}J_{HH} = 7$ Hz, OCH₂); 7.30(1s, 1H, =CH); 7.34-7.77 (m, 5H, arom); 7.81 (1s, 1H, imidazol); 13 C NMR (CDCl₂) for E: _ =13.55,28.07 and 29.90 (3CH₂); 62.02 (OCH₂); 128.38, 129.70, 131.98, 132.14 and 141.58 (7CH); 107.96, 125.96, 137.02 and 148.75 (4C); 151.61 and 154.50 (2C=O of amide); 162.75 (C=O of ester).

Selected data for Dimethyl (Z,E)-2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)butenedioate (4f).

Viscous yellow oil, Yield: 90% IR (Neat) (max, cm⁻¹): 3115, 2953, 1715, 1669, 1230 and 1276. ¹H NMR (CDCl₂, &E = 21 and &Z = 79 for Z: = 3.32 and 3.60 (2s, 6H, 100)2CH₂), 3.69 and 3.83 (2s, 6H, 2OCH₂), 7.67 (1s, 1H, =CH), 7.11 (1s, 1H, imidazol). ¹³C NMR (CDCl₃) for Z : 28.03 and 30.03 (2CH₂), 52.67 and 53.88 (2OCH₂), 102.84, 134.19 and 148.47 (3C), 125.43 (=CH), 142.44 (CH imidazol), 151.57 and 154.55 (2C=O of amid), 162.14 and 162.80 (2C=O of ester). ${}^{1}H$ NMR (CDCl₃, %*E* = 21 and %Z = 79) for E: $_{H} = 3.35$ and $3.58 (2s, 6H, 2CH_{3}), 3.78$ and 3.83 (2s, 6H, 2OCH₃), 6.64 (1s, 1H, =CH), 7.72 (1s, 1H, imidazol). ¹³C NMR (CDCl₃) for $E_{c} = 28.26$ and 30.03 (2CH₂), 52.72 and 53.64 (2OCH₂), 104.02, 134.19 and 148.47 (3C), 123.03 (=CH), 141.11 imidazol), 151.57 and 154.55 (2C=O of amid), 162.14 and 162.80 (2C=O of ester).

Selected data for ethyl (Z)-2-(1H-imidazol-1-yl)-3-phenyl-2-propenoate (4g).

White crystals; Yield: 98%, mp: 90-92 °C. IR (KBr) ($_{max}$, cm⁻¹): 2969, 1712, 1643, 1257 and 1211. ¹H NMR (CDCl₃) _H: 1.35 (t, 3 H, ³J_{HH} = 7.0 Hz, CH₃ of OEt), 4.33 (q, 2 H, ³J_{HH} = 7.0 Hz, OCH₂ of OEt), 6.89 and 7.29 (2 d, 2 H, CH=CH of imidazole), 7.25-7.35 (m, 5 H, arom), 7.44 (s, 1 H, =CH), 7.85 (s, 1 H, =CH of imidazole). ¹³C NMR (CDCl₃) _C: 14.17 (CH₃), 62.14 (OCH₂ of OEt), 119.37, 130.06 and 138.15 (3 CH of imidazole), 125.12 (CH of vinyl), 128.99, 130.06 and 130.92, (5 CH of Ph), 131.27 and 137 (2 C), 163.78 (C=O of ester).

RESULTS AND DISCUSSION

Silica NPs were prepared by thermal decomposition of rice hulls [29-31]. The results from XRD showed that the sample was silica NPs as indicated by broadened peaks around 2 = 22 (Fig. 1). The morphology and grain size of the silica NPs was investigated by scanning electron microscopy (SEM) (Fig. 2).

Silica NPs were found to catalyze the formation of *N*-vinyl imidazole derivatives **4** (X or Y) from triphenylphosphine **1** and acetylenic esters **2**, by NH-acids (azathioprine, imidazole and theophylline) **3** under solvent-free conditions in high yields (Fig. 3 and Table 1). We have also used silica-gel powder instead of silica NPs in this reaction, but the reaction times and the amounts of used silica gel powder as catalyst were very high [27, 28]. The use of just 0.3 g of silica NPs (per mmol of reactants) was sufficient to push the reaction forward. Higher amounts of silica NPs (0.4 g) did not improve the result to a great extent (Table 2).

Fig. 1: X-ray diffraction pattern of the synthesized of silica nanoparticles.

Fig. 2: SEM of the synthesized of silica nanoparticles.

A. Ramazani et al.

Table 1: Synthesis of *N*-vinyl imidazole derivatives 4 from acetylenic esters in the presence of silica nanoparticles.^a) (See Fig. 3).

4	Z	E_1	E_2	Product	% Yield ^{a,b}
a		Н	CO ₂ M e	$H \xrightarrow{V}_{C \ 0 \ 2^{M} e} N \xrightarrow{V}_{N} N$	80
b		Ph	CO ₂ Et	$\begin{array}{c} Ph \\ H \\ H \\ CO_2Et \\ O_2N \end{array}$	87
с		Н	CO ₂ M e	$H \xrightarrow{V}_{C O_2 Me} V \xrightarrow{CH_3}_{C O_2 Me} CH_3$	97
d		Н	CO ₂ Et	$H \xrightarrow{V}_{C O_2 Et} V \xrightarrow{CH_3}_{CH_3} V \xrightarrow$	95
e	× × × × × × × × × × × × × ×	Ph	CO ₂ Et	$H_{3}C-N \rightarrow O \qquad A \qquad$	97
f	N N N N N N N N N N N N C H ₃ N C H ₃	CO ₂ Me	CO ₂ M e	$H_{3}C-N \xrightarrow{CH_{3}} 0$ and $H_{3}C-N \xrightarrow{CO_{2}Me} 0$ $H_{3}C-N \xrightarrow{CO_{2}Me} 0$ $H_{3}C-N \xrightarrow{CO_{2}Me} 0$	90
g	× × 	Ph	CO ₂ Et		98

^a) cf. Fig. 3; 0.3 g SiO₂ NPs/mmol reactants were applied.

^b) Yield of isolated 4.

Entry	Cataly st ^a	Temp (°C)	Time (min)	Yield (%) ^b)
1	Silica gel powder (1.5 g)	90	60	90
2	SiO_2 NPs (0.2 g)	90	30	93
3	SiO ₂ NPs (0.3 g)	90	30	97
4	SiO ₂ NPs (0.4 g)	90	30	97

Table 2: Synthesis of *N*-vinyl imidazole 4c from the reaction of theophylline and methyl 3-phenyl-2propynoate under various conditions.

^a) Amount of SiO₂ catalyst per mmol of reactants.

^b) Yields of isolated 4c.

Fig. 3: Synthesis of N-vinyl imidazole derivatives 4 in the presence of silica nanoparticles. (See Table 1)

The zwitterionic intermediate 9 may result from the initial addition of triphenylphosphine 1 to the acetylenic esters 2 and concomitant protonation of the 1:1 adduct 5, followed by an attack of the NH-acid anion on the vinyltriphenylphosphonium cation to form the phosphorane 8 (Fig. 4). That fact that phosphorus 8 undergoes an intramolecular proton transfer [32-34] leads to formation of zwitterionic intermediate 9 in Silica NPs. Silica NPs was found to catalyze the conversion of the zwitterionic intermediates 8 to electron-poor imidazoles 4 (X or Y) in solvent-free conditions [34] under thermal (90 °C, 30 min) conditions. In the absence of the Silica NPs, the conversion of the zwitterionic intermediates 8 to electron-poor N-vinyl imidazoles 4 (X or Y) were not observed, and decomposition of the starting materials were observed (Fig. 3). The reaction proceeds smoothly and cleanly under mild conditions, and no side reactions were observed. The mechanism of the reaction has not been established experimentally. However, a possible explanation is proposed in Fig. 4.

The structures of these compounds were confirmed by IR, ¹H, and ¹³C NMR spectroscopy (Table 3).

It may be speculated that the polar amphoteric surface (OH groups of the silica NPs) facilitates the interaction of adsorbed weak acidic and basic components due to stabilization of the corresponding transition states and intermediates by H-bonding. It seems that the interactions with the neighboring silanol groups are plausible factors in the rate acceleration. Participation of two proximate silanol groups (one as an H-bond donor and the other as an H-bond acceptor) in the reaction mechanism also seems to be plausible.

The recycling potential of the silica NPs catalyst was studied by reaction of theophylline and methy 1 3pheny 1-2-propynoate in five consecutive cycles. The silica NPs could be recycled and reused by separating them from the reaction mixture through centrifugation, frequent washing with EtOH, and drying under vacuum to remove the residual solvent. The results show that the yield of product, after five runs, was only slightly reduced (Fig. 5).

A. Ramazani et al.

Fig. 4: Proposed mechanism for the preparation of *N*-vinyl imidazole derivatives 4 (X or Y) from acetylenic esters 2 and imidazoles 3 in the presence of silica nanoparticles.

Int. J. Nano Dimens., 7(1): 41-48, Winter 2016

4	Physical data	IR (m_{ax}, cm^{-1})	¹ H NMR (CDCl ₃) _H (ppm)	¹³ C NMR (CDCl ₃) _c (ppm)
a	Viscous yellow oil	(Neat): 3123, 2923, 1738, 1646 and 1192.	3.76 (s, 3 H, CH ₃), 3.89 (s, 3 H, OCH ₃), 6.42 and 6.75 (2 d, 2H, ${}^{2}J_{HH} = 1.0$ Hz, =CH ₂), 7.76 and 8.24 (2 s, 2 H, CH=N of imidazole), 8.59 (s, 1 H, CH=N of pyrimidine).	33.21 (CH ₃), 53.36 (OCH ₃), 125.19 (=CH ₂), 138.03 and 143.94 (2 CH of imidazole), 152.54 (CH of pyrimidine), 116.51, 130.57, 138.03, 150.35 and 157.04 (6 C), 162.24 (C=O of ester).
b	Viscous yellow oil	(Neat): 3115, 2930, 1723, 1646, 1269 and 1207.	1.31 (t, 3 H, ${}^{3}J_{HH}$ = 7.0 Hz, CH ₃ of OEt), 3.75 (s, 3 H, CH ₃), 4.33 (q, 2 H, ${}^{3}J_{HH}$ = 7.0 Hz, OCH ₂ of OEt), 6.90 (d, 2 H, ${}^{3}J_{HH}$ = 7.3 Hz, arom), 7.22- 7.37 (m, 5 H, arom), 7.76 (s, 1 H, =CH), 7.90 and 8.16 (2 s, 2 H, CH=N of imidazole), 8.53 (s, 1 H, CH=N of pyrimidine).	 14.17 and 33.29 (2 CH₃), 62.58 (OCH₂ of OEt), 121.29 (CH of vinyl), 129.29, 129.80 and 130.83 (5 CH of Ph), 141.13 and 144.07 (2 CH of imidazole), 152.76 (CH of pyrimidine), 116.87, 129.29, 131.49, 138.00, 150.35 and 157.01 (7 C), 163.00 (C=O of ester).
с	Colorless crystals, m.p. 160-163 °C.	(KBr): 2953, 1707, 1669, 1453, 1230.	3.36, 3.60 (2s, 6H, 2CH ₃); 3.86 (1s, 3H, OCH ₃); 5.99-6.51 (d of d, 2H, ² J _{HH} = 1Hz, =CH ₂); 7.63 (1s, 1H, imidazol).	28.07 and 29.66 (2CH ₃); 53.23 (OCH ₃); 107.94, 133.39 and 148.74 (3C); 123.69 (=CH ₂); 140.95 (CH imidazol); 151.60 and 154.47 (2C=O of amide); 162.33(C=O of ester).
d	Colorless crystals, m.p. 143- 146 °C.	(KBr): 2984, 1715, 1676, 1453, 1230.	1.27 (1t, 3H, ${}^{3}J_{HH} = 7.25$ Hz, CH ₃); 3.38, 3.62 (2s, 6H, 2CH ₃); 4.29 (q, 2H, ${}^{3}J_{HH} = 7$ Hz, OCH ₂); 5.99-6.52 (d of d, 2H, ${}^{2}J_{HH} = 1$ Hz, =CH ₂); 7.63 (1s, 1H, imidazol).	14.04, 28.07 and 29.66 (3CH ₃); 62.55 (OCH ₂); 107.97, 133.62 and 148.73 (3C); 123.42 (=CH ₂); 141 (CH imidazol); 151.64 and 154.46 (2C=O of amide); 161.82 (C=O of ester).
e	Colorless crystals, m.p. 145- 148 °C.	(KBr): 2946, 1707, 1661, 1453, 1269.	(% E = 40 and % Z = 60) for E: 1.59 (1t, 3H, ${}^{3}J_{HH} = 7.25$ Hz, CH ₃); 3.40 and 3.65 (2s, 6H, 2CH ₃); 4.25 (q, 2H, ${}^{3}J_{HH} = 7$ Hz, OCH ₂); 7.30(1s, 1H, =CH); 7.34-7.77 (m, 5H, arom); 7.81 (1s, 1H, imidazol);	for Z: $c = 14.13, 27.95$ and 29.91 (3CH ₃); 62.28 (OCH ₂); 129.11, 129.70, 130.90, 138.66 and 141.19 (7CH); 107.39, 123.77, 131.06 and 148.68 (5C); 151.64 and 154.24 (2C=O of amide); 163.10 (C=O of ester). for E: $c = 13.55, 28.07$ and 29.90 (3CH ₃); 62.02 (OCH ₂); 128.38, 129.70, 131.98, 132.14 and 141.58 (7CH); 107.96, 137.02 and 148.75 (4C); 151.61 and 154.50 (2C=O of amide); 162.75 (C=O of ester).
f	Viscous yellow oil	(N eat): 3115, 2953, 1715, 1669, 1230 and 1276.	(% E = 21 and %Z = 79) for Z: <i>u</i> = 3.32 and 3.60 (2s, 6H, 2CH ₃), 3.69 and 3.83 (2s, 6H, 2OCH ₃), 7.67 (1s, 1H, =CH), 7.11 (1s, 1H, imidazol). for E: <i>u</i> = 3.35 and 3.58 (2s, 6H, 2CH ₃), 3.78 and 3.83 (2s, 6H, 2OCH ₃), 6.64 (1s, 1H, =CH), 7.72 (1s, 1H, imidazol).	for Z c: 28.03 and 30.03 (2CH ₃), 52.67 and 53.88 (2OCH ₃), 102.84, 134.19 and 148.47 (3C), 125.43 (=CH), 142.44 (CH imidazol), 151.57 and 154.55 (2C=0 of amid), 162.14 and 162.80 (2C=0 of ester). for $E_{\rm C} = 28.26$ and 30.03 (2CH ₃), 52.72 and 53.64 (2OCH ₃), 104.02, 134.19 and 148.47 (3C), 123.03 (=CH), 141.11 imidazol), 151.57 and 154.55 (2C=0 of amid), 162.14 and 162.80 (2C=0 of ester).
g	White crystals, mp: 90- 92 °C.	(KBr): 2969, 1712, 1643, 1257 and 1211.	1.35 (t, 3 H, ${}^{3}J_{HH}$ = 7.0 Hz, CH ₃ of OEt), 4.33 (q, 2 H, ${}^{3}J_{HH}$ = 7.0 Hz, OCH ₂ of OEt), 6.89 and 7.29 (2 d, 2 H, CH=CH of imidazole), 7.25-7.35 (m, 5 H, arom), 7.44 (s, 1 H, =CH), 7.85 (s, 1 H, =CH of imidazole).	14.17 (CH ₃), 62.14 (OCH ₂ of OEt), 119.37, 130.06 and 138.15 (3 CH of imidazole), 125.12 (CH of vinyl), 128.99, 130.06 and 130.92, (5 CH of Ph), 131.27 and 137 (2 C), 163.78 (C=O of ester).

Table 3: Selected physical and spectral data for N-vinyl imidazole derivatives 4 (See Fig. 3 and Experimental section).

CONCLUSION

In conclusion, we have developed a convenient and one-pot for preparing electron-poor imidazoles in the presence of silica NPs. The ease of workup and high yields of products make this procedure a useful addition to modern synthetic methods. Furthermore, this solvent-free reaction has many advantages: reduced pollution, low costs, and simplicity in process and handling. These factors may be important, especially in industry.

ACKNOWLEDGEMENT

The authors thank the University of Zanjan for the support and guidance.

REFERENCES

- [1] Kamaraj K., Kim E., Galliker B., Zakharov N. L., Rheingold R. A., Zuberbuhler D. A., Karlin D. K., (2003), Copper(I) and copper(II) complexes possessing cross-linked imidazolephenol ligands:Structures and dioxygen reactivity. J. Am. Chem. Soc. 15: 6028-6029.
- [2] Moore R. L., Cooks M. S., Anderson S. M., Schanz J. H., Griffin T. S., Rogers D. R., Kirk C. M., Shaughnessy K. H., (2006), Synthesis and Characterization of Water-Soluble Silver and Palladium Imidazol-2-ylidene Complexes with Noncoordinating Anionic Substituents. *Organometallics*. 25: 5151-5158.
- [3] Wiglenda T., Gust R., (2007), Structure Activity Relationship Study To Understand the Estrogen Receptor-Dependent Gene Activation of Aryl- and Alkyl-Substituted 1H-Imidazoles. J. Med. Chem. 50: 1475-1484.
- [4] Baran S. P., O'Malley P. D., Zografos L. A., (2004), Sceptrin as a Potential Biosynthetic Precursor to Complex Pyrrole-Imidazole Alkaloids: The Total Synthesis of

Ageliferin. Angew. Chem. Int. Ed. 43: 2674-2677.

- [5] O'Malley P. D., Li K., Maue M., Zografos L. A., Baran S. P., (2007), Total Synthesis of Dimeric Pyrrole"Imidazole Alkaloids: Sceptrin, Ageliferin, Nagelamide E, Oxysceptrin, Nakamuric Acid, and the Axinellamine Carbon Skeleton. J. Am. Chem. Soc. 129: 4762-4775.
- [6] Wang R., Xiao C. J., Twamley B., Shreeve M. J., (2007), Efficient Heck reactions catalyzed by a highly recyclable palladium(II) complex of a pyridyl-functionalized imidazolium-based ionic liquid. Org. Biomol. Chem. 5: 671-678.
- [7] Kan C. H., Tseng C. M., Chu H. Y., (2007), Bicyclic imidazolium-based ionic liquids: synthesis and characterization. *Tetrahedron*. 63: 1644-1653.
- [8] Lantz W. L., Manasia J. P., (1970), Powdered heat-curable compositions of (1) an epoxy-amine adduct,(2) an anhydride and (3) an imidazole. Shell Oil Co. US Patent. US3,538,039A.
- [9] Astruc D., Lu F., Aranzaes, J. R., (2005), Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. *Angew. Chem., Int. Ed.* 44: 7852-7872.
- [10] Beletskaya I. P., Cheprakov A. V., (2000), The Heck Reaction as a Sharpening Stone of Palladium Catalysis. *Chem. Rev.* 100: 3009-3066.
- [11] Lewis L. N., (1993), Chemical catalysis by colloids and clusters. *Chem. Rev.* 93: 2693-2730.
- [12] Banerjee S., Santra S., (2009), Remarkable catalytic activity of silica nanoparticle in the bis-Michael addition of active methylene compounds to conjugated alkenes. *Tetrahedron Lett.* 50: 2037-2040.
- [13] Kolodiazhnyi O. I., (1999), Phosphorus Ylides: Chemistry and Applications in Organic Chemistry (Wiley, New York).
- [14] Kaska W. C., (1983), The coordination chemistry of ylides. Coord. Chem. Rev. 48: 1-58.
- [15] Maryanoff B. E., Reitz A. B., (1989), The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. *Chem. Rev.* 89: 863-927.
- [16] Cobridge D. E. C., (1995), Phosphorus: An Outline of Chemistry, Biochemistry and Uses, 5th ed. (*Elsevier*, *Amsterdam*).
- [17] Ramazani A., Bodaghi A., (2000), One-pot, fourcomponent synthesis of dialkyl [indane-1,3-dione-2ylidene]alkoxysuccinates. *Tetrahedron Lett.* 41: 567-568.
- [18] Pakravan P., Ramazani A., Noshiranzadeh N., Sedrpoushan A., (2007), One-Pot Synthesis of Fluorine-Containing Alkenes from In Situ-Generated Stabilized Phosphorus Ylides. *Phosph. Sulf. Silicon. Relat. Elem.* 182: 545-549.
- [19] Ramazani A., Rahimifard M., Noshiranzadeh N., Souldozi A., (2007), Dipotassium Hydrogen Phosphate-Catalyzed Synthesis of Dialkyl 2-(4-Fluoro-Phenoxy)-2-Butendioates From Stabilized Phosphorus Ylides in Solvent-Free Conditions. *Phosph. Sulf. Silicon. Relat. Elem.* 182: 413-417.
- [20] Souldozi A., Ramazani A., Bouslimani N., Welter R., (2007), The reaction of (*N*-isocyanimino)triphenylphosphorane with dialkyl acetylenedicarboxylates in the presence of 1,3diphenyl-1,3-propanedione: a novel three-component

reaction for the stereoselective synthesis of dialkyl (Z)-2-(5,7-diphenyl-1,3,4-oxadiazepin-2-yl)-2-butenedioates. *Tetrahedron Lett.* 48: 2617-2620.

- [21] Souldozi A., Ramazani A., (2007), The reaction of *N*isocyanimino) triphenylphosphorane with benzoic acid derivatives: a novel synthesis of 2-aryl-1,3,4oxadiazole derivatives. *Tetrahedron Lett.* 48: 1549-1551.
- [22] Ramazani A., Souldozi A., (2009), (N-Isocyanimino)triphenylphosphorane as an Efficient Reagent for the Synthesis of 1,3,4-Oxadiazoles from 3-Substituted Benzoic Acid Derivatives. Phosph. Sulf. Silicon Relat. Elem. 184: 3191-3198.
- [23] Ramazani A., Souldozi A., (2008), Iminophosphoranes mediated one-pot synthesis of 1,3,4oxadiazole derivatives. Arkivoc. xvi: 235-242.
- [24] Ramazani A., Salmanpour S., Souldozi A., (2010), (N-Is ocyanimino)triphenylphosphorane-Catalyzed Stereoselective O-vinylation of N-Hydroxyimides. Phosph. Sulf. Silicon Relat. Elem. 185: 97-102.
- [25] Ramazani A., Rezaei A., (2010), Novel One-Pot, Four-Component Condensation Reaction: An Efficient Approach for the Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives by a Ugi-4CR/aza-Wittig Sequence. Org. Lett. 12: 2852-2855.
- [26] Souldozi A., lepokura K., Lis T., Ramazani A., (2007), Synthesis and Single Crystal X-Ray Structure of 2-(1,3,4-Oxadiazol-2-yl)aniline. Z. Naturforsch. 62b: 835-840.
- [27] Ramazani A., Farshadi A., Mahyari A., S´lepokura K., Lis T., Rouhani M., (2011), Syntheses and Crystal Structures of Three Electron Poor N-Vinyltheophylline Derivatives. J. Chem. Crystallogr. 41: 1376-1385.
- [28] Farshadi A., Ramazani A., Mahyari A. T., Khoobi M., Ahmadi Y., Nasrabadi F. Z., (2010), Triphenylphosphinecatalyzed preparation of sterically congested, electron-poor n-vinylimidazole derivatives from acetylenic esters and imidazole-containing nh-acids. *Phosph. Sulf. Silicon Relat. Elem.* 185: 2489-2495.
- [29] Ramazani A., Mahyari A., (2010), Three-Component Reaction of Isocyanides and 2-Formylbenzoic Acid with Dibenzylamine Catalyzed by Silica Nanoparticles under Solvent-Free Conditions. *Helv. Chim. Acta*. 93: 2203-2209.
- [30] Ramazani A., Mahyari A., Lashgari H., S´ lepokura K., Lis T., (2011), Silica Nanoparticles as a Highly Efficient catalyst for the One-Pot Synthesis of 2-Hydroxyacetamide Derivatives from Isocyanides and Electron-Poor Aromatic Aldehydes. *Helv. Chim. Acta.* 94: 611-622.
- [31] De Souzaa M. F., Batistaa P. S., Regiania I., Liboriob J. B. L., de Souzac D. P. F., (2000), Rice Hull-Derived Silica: Applications in Portland Cement and Mullite Whiskers. *Mater. Res.* 3: 25-30.
- [32] Yavari I., Norouzi-Arasi H., (2002), Triphenylphosphine-Catalyzed Nucleophilic -Addition to Alkyl Propiolates Synthesis of -Substituted Alkyl Acrylates. *Phosph, Sulf. Silicon Relat. Elem.* 177: 87-92.
- [33] Ramazani A., Noshiranzadeh N., Mohammadi B., (2003), Tributylphosphine Catalyzed Stereoselective N-Vinylation of Phthalimide and Succinimide. *Phosph. Sulf. Silicon Relat. Elem.* 178: 539-543.
- [34] Tanaka K., Toda F., (2000), Solvent-Free Organic Synthesis. Chem. Rev. 100: 1025-1074.

How to cite this article: (Vancouver style)

Ramazani A., Farshadi A., Mahyari A., Sadri F., Woo Joo S., Azimzadeh Asiabi P., et al., (2016), Synthesis of electron-poor N-Vinylimidazole derivatives catalyzed by Silica nanoparticles under solvent-free conditions. Int. J. Nano Dimens. 7(1): 41-48. DOI: 10.7508/ijnd.2016.01.005

URL: http://ijnd.ir/article_15305_2444.html