[1] Holmberg K., Matthews A. (1994). Coatings tribology: properties, techniques and applications in surface engineering. Appl. Surf. Chem. 95: 23-35.
[2] Mazeran P. E., Loubet J. L., (1999), Normal and lateral modulation with a scanning force microscope, an analysis: implication in quantitative elastic and friction imaging. Tribology Lett. 7: 199-212.
[3] Giessibl F. J., , (2003), Advances in atomic force microscopy. Rev. Modern Phys. 75: 949-983.
[4] Garcia R., Perez R., (2002), Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47: 85-89.
[5] Fang T. H., Chang W. J., (2003), Effects of AFM-based nanomachining process on aluminum surface. Phys. Chem. Solids. 64: 913-918.
[6] Chang W. J., Fang T. H. , Weng C. I. , (2006), Nanoindentation and nanomachining characteristics of gold and platinum thin films. Mat. Sci. Eng. 44: 430-435.
[7] Bhushan B. (2008). Nanotribology and Nanomechanics, an introduction, Germany: Springer.
[8] Abbasi M., Karami Mohammadi A., (2014), A Detailed Analysis of the Resonant Frequency and Sensitivity of Flexural Modes of Atomic Force Microscope Cantilevers with a Sidewall Probe Based on a Nonlocal Elasticity Theory. Strojni.ki vestnik - J. Mech. Eng. 60: 179-186.
[9] Turner J. A., Wiehn J. S., (2001), Sensitivity of Flexural and Torsional Vibration Modes of Atomic Force icroscope Canti levers to Surface St iffness Variation. Nanotech. 12: 322-330.
[10] Lee H. L., Chang W. J., (2008), Coupled lateral bendingtorsional vibration sensitivity of atomic force microscope cantilever. Ultramicros. 108: 707-711.
[11] Abbasi M., Karami Mohammadi A., (2009), Effect of contact posit ion and tip properties on the flexural vibration responses of atomic force microscope cantilevers. IREME. 3: 196-202.
[12] Abbasi M., Karami Mohammadi A., (2014), Study of the sensitivity and resonant frequency of the flexural modes of an atomic force microscopy microcantilever modeled by strain gradient elasticity theory. P I MECH ENG C-J MEC. 228: 1299-1310.
[13] Horng T. L., (2009), Analyses of vibration responses on nanoscale processing in a liquid using tapping-mode atomic force microscopy. Appl. Surf. Sci. 256: 311-317.
[14] Cuberes M. T., Briggs G. D., Kolosov O. , (2001), Nonlinear Detection of Ultrasonic Vibration of AFM Cantilevers in and out Contact with Sample. Nanotech. 12: 53-59.
[15] Abbasi M., Karami Mohammadi A., (2010), A new model for investigating the flexural vibration of an atomic force microscope cantilever. Ultramicros. 110: 1374-1379.
[16] Dai G., Wolff H., Pohlenz F., Danzebrink H. U., Wilkening G., (2006), Atomic force probe for sidewall scanning of nano- and microstructures. Appl. Phys. Lett. 88: 171908.
[17] Chang W. J., Lee H. L., Chen,T. Y., (2008), Study of the sensitivity of the first four flexural modes of an AFM cantilever with a sidewall probe. Ultramicros. 108: 619-624.
[18] Kahrobaiyan M. H., Ahmadian M. T., Haghighi P., Haghighi A., (2010), Sensitivity and resonant frequency of an AFM with sidewall and top-surface probes for both flexural and torsional modes. Int. J. Mech. Sci. 52: 1357-1365.
[19] Dai G., Wolff H., Weimann T., Xu M., Pohlenz F., Danzebrink H. U. , (2007), Nanoscale surface measurements at sidewalls of nano- and micro-structures. Meas. Sci. Tech. 18: 334-341.
[20] Kong S., Zhou S., Nie Z., Wang K., (2008), The sizedependent natural frequency of Bernoulli.Euler micro beams. Int. J. Eng. Sci. 46: 427-437.
[21] Mc Farland A. W., Colton J. S., (2005), Role of material microstructure in plate st iffness wi th relevance to microcantilever sensors. J. Micromech. Microeng. 15: 1060-1067.
[22] Fleck N. A., Muller G. M., Ashby M. F., (1994), Strain gradient plastici ty: theory and experiment . Acta Metallurgica et Materialia. 42: 475-487.
[23] Mindlin R. D., Tiersten H. F., (1962), Effects of couplestresses in linear elasticity. Arch. Rational Mech. Anal.11: 415-448.
[24] Toupin, R. A., (1962), Elastic materials with couple stresses. Arch. Rational Mech. Anal. 11: 385-414.
[25] Koiter W. T., (1964), Couple stresses in the theory of elasticity. Proc. K. Ned. Akad. Wet. (B) 67: 17-44.
[26] Yang F., Chong A. C. M., Lam D. C. C., Tong P., (2002), Couple stress based strain gradient theory for elasticity. Int. J. Solids and Struc. 39: 2731-2743.
[27] Park S. K., Gao X. L., (2006), Bernoulli. Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16: 2355-2359.
[28] Ma Q., Clarke D. R., (1995), Size dependent hardness of silver single crystals. J. Mater. Res. 10: 853-863.
[29] Ke L. L., Wang Y. S., Yang J., Kitipornchai S., (2011), Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50: 256-267.
[30] Kahrobaiyan M. H., Asghari M., Rahaeifard M., Ahmadian M. T., (2010), Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. Int. J. Eng. Sci. 48: 1985-1994.
[31] Lee H. L., Chang W. J., (2011), Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory. Microelec. Eng. 88: 3214-3218.
[32] Lee H. L., Chang W. J., Yang Y. C., (2005), Flexural sensitivity of a V-shaped cantilever of an atomic force microscope. Mater. Chem. Phys. 92: 438-442.
[33] Beer F. P., Johnston E. R., (1981), Mechanics of Materials, New York: McGraw-Hill.