Numerical study of turbulent forced convection jet flow of nanofluid in a converging sinusoidal channel

Document Type : Reasearch Paper

Authors

1 School of Mechanical Engineering, Mazandaran University of Science and Technology, Babol, Iran.

2 Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.

3 School of Mechanical Engineering, Babol University of Technology, P. O. Box 484, Babol, Iran.

10.7508/ijnd.2016.01.007

Abstract

Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade. Recent investigations on nanofluid, as such suspensions are often called, indicate that the suspended nanoparticles remarkably change the transport properties and heat transfer characteristics of the suspension. Bending walls can also improve heat transfer by increasing the total heat transfer from a surface and changing the behavior of the flow. In this paper two-dimensional incompressible nanofluid flow in a confined sinusoidal converging jet in turbulent flow regime is numerically investigated. Results have been shown for the flow structure at different Reynolds numbers for steady asymmetric jet development at various values of the duct-to-jet width ratio (aspect ratio), different amplitudes of surface undulation and different volume fractions of nanoparticles. For considering unsteady treatment of the flow, the streamlines and temperature contours result for the unsteady problem is presented and compared with the steady results. The present computations are in a very good agreement with experimental results in open literature. The results show that by increasing the Reynolds number, aspect ratio, amplitude and volume fraction the average the Nusselt number will increase.

Keywords

Main Subjects


[1] Choi S. U. S., (1995), Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows. ASME FED 231/ MD 66: 99-103.
[2] Keblinski P. P., Choi S. U. S., Eastman J. A., (2002), Mechanisms of heat flow in suspensions of nano-sized particles (nanofluid). Int. J. Heat. Mass. Trans. 45: 855-863.
[3] Eastman J. A., Phillpot S. R., Choi S. U. S., Keblinski P., (2004), Thermal transport in Nanofluids. Annu. Rev. Mater. Res. 34: 219-246.
[4] Zhang Y., Li L., Ma H. B., Yang M., (2009), Effect of Brownian and Thermophoretic Diffusions of Nanoparticles on Nonequilibrium Heat Conduction in a Nanofluid Layer with Periodic Heat Flux. Num. Heat. Transf. part A. 56: 325-341.
[5] Ravikanth S. V., Debendra K. D., Devdatta P. K., (2010), Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int. J. Heat. Mass. Trans. 53: 4607-4618.
[6] Sundar S. L., Sharma K.V., (2010), Turbulent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts. Int. J. Heat. Mass. Trans. 53: 1409-1416.
[7] Duangthongsuk W., Wongwises S., (2010), An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat. Mass. Trans. 53: 334-344.
[8] Fotukiana S. M., Esfahany M. N., (2010), Experimental investigation of turbulent convective heat transfer of dilute ã-Al2O3/water nanofluid inside a circular tube. Int. J. Heat. Fluid. Flow. 31: 606-612.
[9] Ghaffari O., Behzadmehr A., Ajam H., (2010), Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. Int. Communi. Heat. Mass Trans. 37: 1555-1558.
[10] Nishimura T., Matsune S., (1998), Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile flow at low Reynolds numbers. Int. J. Heat. Fluid. Flow. 19: 583-593.
[11] Tolentino F. O., Mendez R. R., Palomares B. G., Guerrero A. H., (2009), Use of diverging or converging arrangement of plates for the control of chaotic mixing in symmetric sinusoidal plate channels. Exp. Ther. Fluid. Scie. 33: 208-214.
[12] Habi M. A. B, Ikra U.H. M, Badr H. M., Said S. A. M., (1998), Calculation of Turbulent Flow and Heat Transfer in Periodically Converging-Diverging Channels. Compute. Fluid. 27: 95-120.
[13] Pham M. V., Plourde F., Doan S. K., (2008), Turbulent heat and mass transfer in sinusoidal wavy channels. Int. J. Heat. Fluid. Flow. 29: 1240- 1257.
[14] Zhang J., Muley A., Borghese J. B., Manglik R. M., (2003), Computational and experimental study of enhanced laminar flow heat transfer in three dimensional sinusoidal wavyplate- fin channels, In: ASME Summer Heat Transfer Conference. Las Vegas, NV, July 21-23.
[15] Yang X. D., Ma H. Y, Huang Y. N., (2005), Prediction of homogeneous shear flow and a backward-facing step flow with some linear and non-linear K.e turbulence models. Communi. Nonlin. Scie. Nume. Simul. 10: 315-328.
[16] Driver D., Seegmiller H., (1985), Features of reattaching turbulent shear layer in divergent channel flow. AIAA J. 23: 163-171.
[17] Shariati M., Bibeau R., Salcudean E., Gartshore M. I., (2000), Numerical and Experimental Models of Flow in the Converging Section Of A Headbox. TAPPI Papermakers Conference, Vancouver, Canada.
[18] Xiaosi Z., (2001) Fiber orientation in Headbox, Msc  thesis, University of British Columbia.
[19] Feng X., Dong S., Gartshore I., Salcudean M., (2005), Numerical Model of Fiber Orientation in the Converging Section of a Paper-machine Headbox using Large Eddy Simulation, Fourth International Conference on CFD in the Oil and Gas, Metallurgical & Process Industries SINTEF / NTNU Trondheim. Norway.
[20] Sarma A. S. R., Sundararajan T., Ramjee V., (2000), Numerical simulation of confined laminar jet flows. Int. J. Nume. Meth. Fluid. 33: 609-626.
[21] Battaglia F., Tavener S. J., Kulkarni A. K., Merkle C. L., (1997), Bifurcation of low Reynolds number flows in symmetric channels. AIAA J. 35: 99-105.
[22] Al-Aswadi A. A., Mohammed H. A., Shuaib N. H., Campo A., (2010), Laminar forced convection flow over a backward facing step using nanofluids. Int. Commu. Heat. Mass. Trans. 37: 950-957.
[23] Launder B. E., Spalding D. B., (1972), Lectures in Mathematical Models of Turbulence. Academic Press. London.
[24] Rostamani M., Hosseinizadeh S. F., Gorji M., Khodadadi J. M., (2010), Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. Int. Commun. Heat. Mass. Trans. 37: 1426-1431.
[25] Chon C. H., Kihm K. D., Lee S. P., Choi S. U. S., (2005), Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3), Thermal conductivity enhancement. Appl. Phys. Lett. 87: 153107-153110.
[26] Mintsa H. A., Roy G., Nguyen C. T., Doucet D., (2009), New temperature dependent thermal conductivity data for water-based Nanofluids. Int. J. Ther. Scie. 48: 363- 371.
[27] Masoumi N., Sohrabi N., Behzadmehr A. A, (2009), New model for calculating the effective viscosity of nanofluids. J. Phys D: Appl. Phys. 42: 55501-55506.
[28] Pak B. C., Cho Y. I., (1998), Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Expe. Heat. Trans. 11: 151-170.