[1] Javadi F. S., Saidur R., Kamalisarvestani M., (2013), Investigating performance improvement of solar collectors by using nanofluids. Renew. Sust. Energy Rev. 28: 232-245.
[2] Yousefi T., Veisy F., Shojaeizadeh E., Zinadini S., (2012), An experimental investigation on the effect of MWCNTH2O nanofluid on the efficiency of flat-plate solar collectors. Exper. Thermal and Fluid Sci. 39: 207-212.
[3] Yousefi T., Veisy F., Shojaeizadeh E., Zinadini S., (2012), An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy. 39: 293-298.
[4] Ghasemi S. E., Mehdizadeh Ahangar GH. R., (2014), Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid. Int. J. Nano Dimens. 5: 233-240.
[5] Jabari Moghadam A., Farzane-Gord M., Sajadi M., Hoseyn-Zadeh M., (2014), Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exper. Thermal and Fluid Sci. 58: 9-14.
[6] Sagadevan S., Pandurangan K., (2015), Investigations on structural and electrical properties of Cadmium Zinc Sulfide thin films. Int. J. Nano Dimens. 6: 433-438.
[7] Faizal M., Saidur R., Mekhilef S., Alim M. A., (2013), Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conv. Manag. 76: 162-168.
[8] Said Z., Saidur R., Rahim N. A., Alim M. A., (2014), Analyses of exergy efficiency and pumping power for a conventionalflat plate solar collector using SWCNTs based nanofluid. Energy and Buildings. 78: 1-9.
[9] Zamzamian A. M., Keyanpour Rad M., Kiani Neyestani M., Tajik Jamal-Abad M., (2014), An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy. 71: 658-664.
[10] Goudarzi K., Nejati F., Shojaeizadeh E., Asadi Yousef-abad S. K., (2015), Experimental study on the effect of pH variation of nanofluids on the thermal efficiency of a solar collector with helical tube. Exper. Thermal and Fluid Sci. 60: 20-27.
[11] Mahian O., Kianifar A., Sahin A. Z., Wongwises S., (2014), Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models. Int. J. Heat and Mass Trans. 78: 64-75.
[12] Minardi J. E., Chuang H. N., (1975), Performance of a .black. liquid flat-plate solar collector. Solar Energy. 17: 179-183.
[13] Tyagi H., Phelan P., Prasher R. S., (2007), Predicted Efficiency of Nanofluid- Based Direct Absorption Solar Receiver. J. Sol. Energy . Trans. ASME 131.
[14] Otanicar T. P., Phelan P. E., Prasher R. S., Rosengarten G., Taylor R. A., (2010), Nanofluid-based direct absorption solar collector. J. Renew. Sustain. 2: 033102.
[15] Parvin S., Nasrin R., Alim M. A., (2014), Heat transfer and entropy generation through nanofluid filled direct absorption solar collector. Int. J. Heat and Mass Trans. 71: 386-395.
[16] Otanicar T. P., Golden J. S., (2009), Comparative Environmental and Economic Analysis of Conventional and Nanofluid Solar Hot Water Technologies. Environ. Sci. Technol. 43: 6082-6087.
[17] Delfani S., Karami M., Akhavan Bahabadi M. A., Raisee M., (2015), Experimental Investigation of CuO Nanofluidbased Direct Absorption Solar Collector for Residential. Appl. Renew. Sustainable Energy Rev. J. 29: 1-10.
[18] Karami M., Delfani S., Akhavan Bahabadi M. A., (2016), Performance Characteristics of a Residential-type Direct Absorption Solar Collector using MWCNT Nanofluid. Renew. Sustainable Energy. 87: Inpress.
[19] Gupta H. K., Agrawal G. D., Mathur J., (2015), Investigations for effect of Al2O3.H2O nanofluid flowrate on the efficiency of direct absorption solar collector. Case studies in therm. eng. 5: 70-78.
[20] Karami M., Akhavan Bahabadi M. A., Delfani S., Ghozatloo A., (2014), A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Solar Energy Mat. Solar Cells. 121: 114-118.
[21] Thermal solar systems and components. Solar collectors. Part 2: Test methods, English version of DIN EN 12975- 2: 2006-06.
[22] ASTM D1217-12, Standard Test Method for Density and Relative Density (Specific Gravity) of Liquids by Bingham Pycnometer, 2012.
[23] ASTM E1269. 11, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, 2011.
[24] Abernethy R. B., Benedict R. P., Dowdell R. B., (1983), ASME measurement uncertainty. ASME paper 83-WA/FM-3.