[1] Sakhaee-Pour A., Ahmadian M. T., Vafai, A., (2008), Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun. 145: 168-172.
[2] Wang Z. L., Song J., (2006), Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 312: 242–246.
[3] Gurtin M. E., Murdoch A. I., (1975), A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57: 291–323.
[4] Gurtin M. E, Murdoch A. I., (1978), Surface stress in solids. Int. J. Solids Struct. 14: 431–440.
[5] Assadi A., Farshi B., Alinia-Ziazi A., (2010), Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107: 124310.
[6] Assadi A., (2013), Size dependent forced vibration of nanoplates with consideration of surface effects. Appl. Math. Model. 37: 3575–3588.
[7] Assadi A., Farshi B., (2010), Vibration characteristics of circular nanoplates. J. Appl. Phys. 108: 074312.
[8] Assadi A., Farshi B., (2011), Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies. Physica E. 43: 1111–1117.
[9] Ansari R., Sahmani S., (2011), Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Mech. Sci. 49: 1244–1255.
[10] Challamel N., Elishakoff I., (2012), Surface stress effects may induce softening: Euler–Bernoulli and Timoshenko buckling solutions. Physica E. 44: 1862–1867.
[11] Karimi M., Shokrani M. H., Shahidi A. R., (2015), Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method. J. Appl. Comp. Mech. 1: 122-133.
[12] Ansari R., Shahabodini A., Shojaei M. F., Mohammadi V., Gholami R., (2014), On the bending and buckling behaviors of Mindlin nanoplates considering surface energies. Physica E. 57: 126–137.
[13] Ansari R., Mohammadi V., Faghih Shojaei M., Gholami R., Sahmani S., (2014), On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Compos Part B. 60: 158–166.
[14] Mouloodi S., Khojasteh J., Salehi M., Mohebbi S., (2014), Size dependent free vibration analysis of Multicrystalline nanoplates by considering surface effects as well as interface region. Int. J. Mech. Sci. 85: 160–167.
[15] Mouloodi S., Mohebbi S., Khojasteh J., Salehi M., (2014), Size-dependent static characteristics of multicrystalline nanoplates by considering surface effects. Int. J. Mech. Sci. 79: 162–167.
[16] Wang K. F., Wang B. L., (2013), A finite element model for the bending and vibration of nanoscale plates with surface effect. Finite. Elem. Anal. Des. 74: 22–29.
[17] Wang K.F., Wang B.L., (2011), Combining effects of surface energy and non-local elasticity on the buckling of nanoplates. Micro Nano Lett. 6: 941–943.
[18] Wang K. F., Wang B. L., (2011), Vibration of nanoscale plates with surface energy via nonlocal elasticity. Physica E. 44: 448–453.
[19] Farajpour A., Dehghany M., Shahidi A. R., (2013), Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment. Compos Part B. 50: 333–343.
[20] Asemi S. R., Farajpour A., (2014), Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheets including surface effects. Physica E. 60: 80–90.
[21] Mahmoud F. F., Eltaher M. A., Alshorbagy A. E., Meletis E. I., (2012), Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Tech. 26: 3555–3563.
[22] Eltaher M. A., Mahmoud F. F., Assie A. E., Meletis E. I., (2013), Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224: 760–774.
[23] Karimi M., Haddad H. A., Shahidi A. R., (2015), Combining surface effects and non-local two variable refined plate theories on the shear/biaxial buckling and vibration of silver nanoplates. Micro and Nano Lett. 10: 276–281.
[24] Shokrani M. H., Karimi M., Tehrani M. S., Mirdamadi H. R., (2015), Buckling analysis of double-orthotropic nanoplates embedded in elastic media based on non-local two-variable refined plate theory using the GDQ method. J. Braz. Soc. Mech. Sci. Eng. DOI: 10.1007/s40430-015-0370-0.
[25] Sheikholeslami M., Rashidi M. M., (2015), Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid. J. Taiwan Inst. Chem. Eng. DOI: 10.1016/j.jtice.2015.03.035.
[26] Sheikholeslami M., ganji D. D., (2014), Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput. Methods Appl. Mech. Eng. 283: 651–663.
[27] Sheikholeslami M., Bandpy M. G., Ashorynejad H. R., (2015), Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity. Physica A. DOI: 10.1016/j.physa.2015.03.009.
[28] Sheikholeslami M., Bandpy M. G., ganji D. D., (2012), Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int. Commun. Heat Mass. 39: 978–986.
[29] Soleimani S., Sheikholeslami M., ganji D. D., Bandpy M. G., (2012), Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int. Commun. Heat Mass. 39: 565–574.
[30] Eringen A. C., Edelen D. G. B., (1972), On nonlocal elasticity. Int. J. Mech. Sci. 10: 233–248.
[31] Karamooz Ravari M. R., Talebi S., Shahidi A. R., (2014), Analysis of the buckling of rectangular nanoplates by use of finite-difference method. Meccanica. 49: 1443–1455.
[32] Karamooz Ravari M. R., Shahidi A. R., (2013), Axisymmetric buckling of the circular annular nanoplates using finite difference method. Meccanica. 48: 135–144.
[33] Greer J. R, Street R. A., (2007), Mechanical characterization of solution-derived nanoparticle silver ink thin films. J. Appl. Phys. 101: 103529.