[1] Maheshwari R. U., Prabhu A. L., Nandagopalan Anburaja V., (2012), Green Synthesis of Silver nanoparticles by using Rhizome Extract of Dioscorea oppositifolia L. and their antimicrobial activity against human pathogens. IOSR J. Pharm. Biolog. Sci. 1: 2278-2285.
[2] Geoprincy G., Vidhaya B. N. SRRI, Poonghuzhali U., Gandhi N. N., Regenthan S., (2013), A review on green synthesis of silver nanoparticles. Asian J. Pharm. Clin. Res. 6: 2438-2441.
[3] Prabhu S., Poulose E. K.., (2012), Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2: 32-38.
[4] Yasin S., Liu L., Yao J., (2013), Biosynthesis of Silver nanoparticles by Bamboo leaves extract and their antimicrobial activity. J. Fiber Bioengin. Informat. 6: 77-84.
[5] Banerjee P., Satapathy M., Mukhopahayay A., Das P., (2014), Leaf extract mediated green synthesis of Silver nanoparticles from widely available Indian plants synthesis, characterization, antimicrobial property and toxicity analysis. Springer Open J. 1: 3-8.
[6]Komal R., Arya V., (2013), Biosynthesis and characterization of silver nanoparticles from aqueous leaf extract of Carica papaya and its antibacterial activity. Int. J. Nanomater. Biostruct. 1: 2277-2282.
[7] Ghorbani H. R., Safekordi A. A., Attar H., Sorkhabadi S. M. R., (2011), Biological and Non-biological Methods for Silver nanoparticles synthesis. Chem. Biochem. Eng. 25: 317-326.
[8] Devi N. N., Shankar D. P., Sutha S., (2012), Biomimetic synthesis of silver nanoparticles from an endophytic fungus and their antimicrobial efficacy. Int. J. Biomed. Adv. Res. 5: 637-642.
[9] Krishnamoorthy P., Jayalakshmi T., (2012), Preparation, characterization and synthesis of silver nanoparticles by using phyllanthusniruri for the antimicrobial activity and cytotoxic effects. J. Chem. Pharm.Res.11: 4783-4794.
[10] Rekha A., Arya V., ( 2013). Biological synthesis of silver nanoparticles from aqueous extract of endophytic fungus Aspergillus terrus and its antibacterial activity. Int. J. Nanomater. Biostruc. 2: 35-39.
[11] Azziz A., (2014), Eco-friendly biosynthesis of silver nanoparticles by Aspergillus parasiticus. Digest J. Nanomater. Biostruc. 6: 1485-1492.
[12] Mishra S., Singh B. R., Singh A., Keswani C., Haqvi A. H., Singh H. B., (2014). Biofabricated Silver nanoparticles act as a strong fungicide against bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE. 9: 97881-97886.
[13] Dubeya S. P., Lahtinenb M., Sillanpaa M., (2010), Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45: 1065-1071.
[14] Jiang X. C., Chen W. M., Chen, Xiong S. X., Yu A. B., (2011), Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Springer Open J. 6: 32-39.
[15] Hudzicki J., (2009), Kirby Bauer Disk Diffusion Susceptibility Test protocol. American Society for Microbiology. 15: 55-63.
[16] Franklin R., Cockerill M. A., Wikler J. A., Michael N. D., George M., Eliopoulos M., Jane F., Dwight J., Hardy D., Hecht W., (2012), Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically and approved standard. 64: 2162-2914.