[1] Wei L., Peng X., HuaCong Z., LiangRong Y., Zhou L. H., (2012), Advanced functional nanomaterials with microemulsion phase. Sci. China Tech. Sci. 55: 387-416.
[2] Haouemi K., Touati F., Gharbi N., (2011), Characterization of a New TiO2 Nanoflower Prepared by the Sol–Gel Process in a Reverse Microemulsion. J. Inorg. and Organometal. Polym. 21: 929-936.
[3] Yakuphanoglu F., (2010), Nanocluster n-CdO thin film by sol-gel for solar cell applications. Appl. Surf. Sci. 257: 1413-1420.
[4] Yakuphanoglu F., Caglar M., Caglar Y., Ilican S., (2010), Electrical characterization of nanocluster n-CdO/p-Si heterojunction diode. J. Alloys Comp. 506: 188-193.
[5] Usharani K., Balu A. R., Suganya M., Nagarethinam V. S., (2015), Cadmium Oxide thin films deposited by a simplified spray pyrolysis technique for optoelectronic applications. J. Appl. Chem. Res. 9: 47-63.
[6] Tadjarodi A., Salehi M., Imani M., (2015), Innovative one pot synthesis method of the magnetic zinc ferrite nanoparticles with a superior adsorption performance. Mat. Lett. 152: 57-59.
[7] He Y., Wu Y., (2010), Evolution of MoTeOx/SiO2 and MoBiTeOx/SiO2 catalysts in the partial oxidation of propane to acrolein. Appl. Surf. Sci. 256: 4317–4321.
[8] Tadjarodi A., Imani M., Kerdari H., (2013), Experimental design to optimize the synthesis of CdO cauliflower-like nanostructure and high performance in photodegradation of toxic azo dyes. Mater. Res. Bullet. 48: 935-942.
[9] Hayashi H., Hakuta Y., (2010), Hydrothermal synthesis of metal Oxide nanoparticles in supercritical water. Materials 3: 3794-3817.
[10] Byrappa K., Adschiri T., (2007), Hydrothermal technology for nanotechnology. Progr. Crystal Growth and Charac. Mater. 53: 117-166.
[11] Wilson J. A., Uebler J. W., LaDuca R. L., (2013), Cadmium adipate coordination polymers prepared with isomeric pyridylamide precursors: pH-dependent in situ reaction chemistry and divergent dimensionalities. Crystal Engin. Communic. 15: 5218-5225.
[12] Wang X. L, Q, Y, Li G. C., Luan J., Lin H. Y., (2013), Effect of organic polycarboxylates on the architectures of cadmium(II) coordination polymers based on dipyrazino [2, 3-f: 22 32 -h]quino-xaline: Syntheses, crystal structures, and photoluminescence properties. Inorg. Chimica Acta. 399: 105-111.
[13] Sun D., Han L. L., Yuan S., Deng Y. K., Xu M. Z., Sun D. F., (2013), Four new Cd(II) coordination polymers with mixed multidentate N-Donors and biphenyl-based polycarboxylate ligands: Syntheses, structures, and photoluminescent properties. Cryst. Growth & Design. 13: 377-385.
[14] Tadjarodi A., Imani M., Kerdari H., (2013), Adsorption kinetics, thermodynamic studies and high performance of CdO cauliflower-like nanostructure on the removal of Congo red from aqueous solution. J. Nanostruc. Chem. 3: 51-59.
[15] Tadjarodi A., Imani M., Izadi M., Shokrayian J., (2015), Solvent free synthesis of ZnO nanostructures and evaluation of their capability for water treatment. Mater. Res. Bullet. 70: 468-477.
[16] Afkhami A., Moosavi R., (2010), Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 174: 398-403.
[17] Nakamoto K., (2009), Infrared Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons Press. Inc. Hoboken, New Jersey.
[18] Zenasni M. A., Meroufe B., Merlin A., George B., (2014), Adsorption of congo red from aqueous solution using CTAB-Kaolin from bechar algeria. J. Surf. Engin. Mater. Adv. Tech. 4: 332-341.
[19] Nagda G. K., Ghole V. S., (2009), Biosorption of congo red by hydrogen peroxide treated tendu waste. Iranian J. Environ. Health Sci. Eng. 6: 195-200.
[20] Wang B., Wu H., Yu L., Xu R., Lim T. T., Lou X. W., (2012), Template-free formation of uniform urchin-like á-FeOOH hollow spheres with superior capability for Water treatment. Adv. Mater. 24: 1111-1116.