Carbon nanotubes via different catalysts and the important factors that affect their production: A review on catalyst preferences

Document Type : Review

Authors

1 Department of Chemical and Process Engineering, UniversitiKebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

2 Chemical and Paper Engineering, Western Michigan University, Kalamazoo, Michigan, USA.

10.7508/ijnd.2016.03.002

Abstract

This review paper provides researcherwith a comprehensive information about the Carbon Nano tubes and the catalyst parameters that influences theproduction and morphology of the of Carbon Nano tubes.Carbon nanotubes, referred to as CNTs, are one of the most important materials used in electrical, mechanical, thermal, chemical and textile industries. Since discovery of CNTs in 1991, many scientists, research groups, and industries have attempted to attain large scale production of CNTs, considering the costs and yields. Catalyst plays an important role in the production of CNTs. In this review various factors that affect CNT production via using different catalysts are reviewed. Factors which are important when choosing a suitable catalyst are also discussed

Keywords

Main Subjects


[1] De Volder M. F., Tawfick S. H., Baughman R. H., Hart A. J., (2013), Carbon nanotubes: Present and future commercial applications. Science. 339: 535-539.
[2] Allaedini G., Aminayi P., Tasirin S. M., Mahmoudi E., (2015), Chemical vapor deposition of methane in the presence of cu/si nanoparticles as a facile method for graphene production. Fullerenes, Nanotubes and Carbon Nanostructures. 23: 968-973.
[3] Khan Z. H., Husain M., (2005), Carbon nanotube and its possible applications. Indian J. Eng. Mater. Sci. 12: 529-533.
[4] Allaedini G., Tasirin S. M., Aminayi P., Yaakob Z., Talib M. Z. M., (2015), Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst. Reaction Kinetics, Mechanisms and Catalysis. 116: 385-396.
[5] Aitken R., Chaudhry M., Boxall A., Hull M., (2006), Manufacture and use of nanomaterials: Current status in the UK and global trends. Occup. Med. 56: 300-306.
[6] Endo M., Hayashi T., Kim Y. A., Terrones M., Dresselhaus M. S., (2004), Applications of carbon nanotubes in the twenty–first century. Philos. Transacti. Royal Society of London. Series A: Mathemat., Physic. Engi. Sci. 362: 2223-2238.
[7] Iijima S., Yudasaka M., Yamada R., Bandow S., Suenaga K., Kokai F., Takahashi K., (1999), Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309: 165-170.
[8] Iijima S., (1991), Helical microtubules of graphitic carbon. Nature. 354: 56-58.
[9] Karthikeyan S., Mahalingam P., Karthik M., (2009), Large scale synthesis of carbon nanotubes. E-J.  Chemi. 6: 1-12.
[10] Baughman R. H., Zakhidov A. A., de Heer W. A., (2002), Carbon nanotubes: The route toward applications. Science. 297: 787-792.
[11] Schünemann C., Schäffel F., Bachmatiuk A., Queitsch U., Sparing M., Rellinghaus B., Rümmeli M. H., (2011), Catalyst poisoning by amorphous carbon during carbon nanotube growth: Fact or fiction?. ACS Nano. 5: 8928-8934.
[12] Rao A., Eklund P., Bandow S., Thess A., Smalley R. E., (1997), Evidence for charge transfer in doped carbon nanotube bundles from raman scattering. Nature. 388: 257-259.
[13] Ionescu A. M., Riel H., (2011), Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 479: 329-337.
[14] Riggs J. E., Guo Z., Carroll D. L., Sun Y.-P., (2000), Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 122: 5879-5880.
[15] Dai L., Chang D. W., Baek J. B., Lu W., (2012), Carbon nanomaterials for advanced energy conversion and storage. Small. 8: 1130-1166.
[16] Köhler A. R., Som C., Helland A., Gottschalk F., (2008), Studying the potential release of carbon nanotubes throughout the application life cycle. J. Cleaner Prod. 16: 927-937.
[17] Balasubramanian K., Kurkina T., Ahmad A., Burghard M., Kern K., (2012), Tuning the functional interface of carbon nanotubes by electrochemistry: Toward nanoscale chemical sensors and biosensors. J. Mater. Res. 27: 391-402.
[18] Luke G. P., Yeager D., Emelianov S. Y., (2012), Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40: 422-437.
[19] Gojny F., Wichmann M., Köpke U., Fiedler B., Schulte K., (2004), Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Composites Sci. Technol. 64: 2363-2371.
[20] Raicopol M., Pruna A., Pilan L., (2013), Supercapacitance of single-walled carbon nanotubes-polypyrrole composites. J. Mater. Chem. 1: 258-261.
[21] He H., Pham-Huy L. A., Dramou P., Xiao D., Zuo P., Pham-Huy C., (2013), Carbon nanotubes: Applications in pharmacy and medicine. BioMed. Res. Int. 4: 145-156.
[22] Tahermansouri H., Chitgar F., (2013), Synthesis of isatin derivative on the short multiwalled carbon nanotubes and their effect on the mkn-45 and sw742 cancer cells. J. Chem. 2013: 1-7.
[23] Lucas Flores O., Kharissova O. V., Guti L., Kharisov B. I., (2013), Application of functionalized swcnts for increase of degradation resistance of acrylic paint for cars. J. Chem. 2013: 8-13.
[24] Mroz P., Tegos G. P., Gali H., Wharton T., Sarna T., Hamblin M. R., (2008), Fullerenes as photosensitizers in photodynamic therapy. Medic. Chem. Pharmacol. Potential Fullerenes and Carbon Nanotubes 2008: 79-106.
[25] Hu J., Odom T. W., Lieber C. M., (1999), Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32: 435-445.
[26] Iyer V. S., Vollhardt K. P. C., Wilhelm R., (2003), Near‐quantitative solid‐state synthesis of carbon nanotubes from homogeneous diphenylethynecobalt and–Nickel complexes. Angew. Chem. 115: 4515-4519.
[27] Cho W. S., Hamada E., Kondo Y., Takayanagi K., (1996), Synthesis of carbon nanotubes from bulk polymer. Appl. Phys. Lett. 69: 278-279.
[28] Qingwen L., Hao Y., Yan C., Jin Z., Zhongfan L., (2002), A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous mgo as support material. J. Mater. Chem. 12: 1179-1183.
[29] Couteau E., Hernadi K., Seo J. W., Thien-Nga L., Mikó C., Gaal R., Forro L., (2003), CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378: 9-17.
[30] Wang Y., Gupta S., Nemanich R., Liu Z., Qin L., (2005), Hollow to bamboolike internal structure transition observed in carbon nanotube films. J. Appl. Phys. 98: 014312.
[31] Schneider J. J., Maksimova N. I., Engstler J., Joshi R., Schierholz R., Feile R., (2008), Catalyst free growth of a Carbon nanotube–Alumina composite structure. Inorg. Chim. Acta. 361: 1770-1778.
[32] Merchan-Merchan W., Saveliev A., Kennedy L. A., Fridman A., (2002), Formation of carbon nanotubes in counter-flow, Oxy-Methane diffusion flames without catalysts. Chem. Phys. Lett. 354: 20-24.
[33] Han W., Redlich P., Ernst F., Rühle M., (2000), Synthesis of gan–carbon composite nanotubes and gan nanorods by arc discharge in nitrogen atmosphere. Appl. Phys. Lett. 76: 652-654.
[34] Guo T., (2004), Multifunctional catalysts for singlewall carbon nanotube synthesis. Nanotechnol. in Catalysis. 1: 137-157.
[35] Mata D., Ferro M., Fernandes A., Amaral M., Oliveira F., Costa P., Silva R., (2010), Wet-etched ni foils as active catalysts towards carbon nanofiber growth. Carbon. 48: 2839-2854.
[36] Romero A., Garrido A., Nieto-Márquez A., De La Osa A. R., De Lucas A., Valverde J. L., (2007), The influence of operating conditions on the growth of carbon nanofibers on carbon nanofiber-supported nickel catalysts. Appl. Catal. A: General. 319: 246-258.
[37] Wang Y., Wu J., Wei F., (2003), A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon. 41: 2939-2948.
[38] Moisala A., Nasibulin A. G., Kauppinen E. I., (2003), The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes: A review. J. Phys.: Condens. Matter. 15: S3011.
[39] Flahaut E., Laurent C., Peigney A., (2005), Catalytic cvd synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon. 43: 375-383.
[40] Liao X., Serquis A., Jia Q., Peterson D., Zhu Y., Xu H., (2003), Effect of catalyst composition on carbon nanotube growth. Appl. Phys. Lett. 82: 2694-2696.
[41] Kitiyanan B., Alvarez W., Harwell J., Resasco D., (2000), Controlled production of single-wall carbon nanotubes by catalytic decomposition of co on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 317: 497-503.
[42] Méhn D., Fonseca A., Bister G., Nagy J., (2004), A comparison of different preparation methods of Fe/Mo/Al2O3 sol–gel catalyst for synthesis of single wall carbon nanotubes. Chem. Phys. Lett. 393: 378-384.
[43] Smith B. W., Luzzi D. E., (2000), Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis. Chem. Phys. Lett. 321: 169-174.
[44] Kumar M., Ando Y., (2010), Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10: 3739-3758.
[45] Magrez A., Seo J. W., Smajda R., Mionić M., Forró L., (2010), Catalytic cvd synthesis of carbon nanotubes: Towards high yield and low temperature growth. Materials. 3: 4871-4891.
[46] Resasco D. E., Herrera J. E., Balzano L., (2004), Decomposition of carbon-containing compounds on solid catalysts for single-walled nanotube production. J. Nanosci. Nanotechnol. 4: 398-407.
[47] Bai X., Li D., Wang Y., Liang J., (2005), Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes. Tsinghua Sci. Technol. 10: 729-735.
[48] Heyning O., Bernier P., Glerup M., (2005), A low cost method for the direct synthesis of highly y-branched nanotubes. Chem. Phys. Lett. 409: 43-47.
[49] Ivanov V., Nagy J., Lambin P., Lucas A., Zhang X., Zhang X., Van Landuyt J., (1994), The study of carbon nanotubules produced by catalytic method. Chem. Phys. Lett. 223: 329-335.
[50] Yao Y., Falk L. K., Morjan R. E., Nerushev O., Campbell E. E., (2004), Synthesis of carbon nanotube films by thermal cvd in the presence of supported catalyst particles. Part ii: The nanotube film. J. Mater. Sci.: Mater. Electron. 15: 583-594.
[51] Lee S.-Y., Yamada M., Miyake M., (2005), Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon. 43: 2654-2663.
[52] Becker M. J., Xia W., Tessonnier J.-P., Blume R., Yao L., Schlögl R., Muhler M., (2011), Optimizing the synthesis of cobalt-based catalysts for the selective growth of multiwalled carbon nanotubes under industrially relevant conditions. Carbon. 49: 5253-5264.
[53] Kiang C.-H., (2000), Growth of large-diameter single-walled carbon nanotubes. J. Phys. Chem. A. 104: 2454-2456.
[54] Wei Y., Eres G., Merkulov V., Lowndes D., (2001), Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78: 1394-1396.
[55] Li Y., Cui R., Ding L., Liu Y., Zhou W., Zhang Y., Liu, J., (2010), How catalysts affect the growth of single‐walled carbon nanotubes on substrates. Adv. Mater. 22: 1508-1515.
[56] Allaedini G., Tasirin S. M., Aminayi P., (2015), Synthesis of CNTs via chemical vapor deposition of carbon dioxide as a carbon source in the presence of nimgo. J. Alloys Compd. 647: 809-814.
[57] Sinnott S., Andrews R., Qian D., Rao A., Mao Z., Dickey E., Derbyshire F., (1999), Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315: 25-30.
[58] Smalley R. E., Smith K. A., Colbert D. T., Nikolaev P., Bronikowski M. J., Bradley R. K., Rohmund F., (2004), Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure Co: Google Patents.
[59] Bronikowski M. J., Willis P. A., Colbert D. T., Smith K., Smalley R. E., (2001), Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the hipco process: A parametric study. J. Vacu. Sci. Tech. A. 19: 1800-1805.
[60] Li Y., Kim W., Zhang Y., Rolandi M., Wang D., Dai H., (2001), Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B. 105: 11424-11431.
[61] Cheung C. L., Kurtz A., Park H., Lieber C. M., (2002), Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B. 106: 2429-2433.
[62] Zhao N., Cui Q., He C., Shi C., Li J., Li H., Du X., (2007), Synthesis of carbon nanostructures with different morphologies by cvd of methane. Mater. Sci. Engin: A . 460: 255-260.
[63] Nasibulin A. G., Pikhitsa P. V., Jiang H., Kauppinen E. I., (2005), Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon. 43: 2251-2257.
[64] Ding F., Rosén A., Bolton K., (2004), Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J. Chem. Phys. 121: 2775-2779.
[65] Ning Y., Zhang X., Wang Y., Sun Y., Shen L., Yang X., Van Tendeloo G., (2002), Bulk production of multi-wall carbon nanotube bundles on sol–gel prepared catalyst. Chem. Phys. Lett. 366: 555-560.
[66] Mukhopadhyay K., Koshio A., Sugai T., Tanaka N., Shinohara H., Konya Z., Nagy J. B., (1999), Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method. Chem. Phys. Lett. 303: 117-124.
[67] Bower C., Zhou O., Zhu W., Werder D., Jin S., (2000), Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77: 2767-2769.
[68] Laurent C., Flahaut E., Peigney A., Rousset A., (1998), Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New J. Chem. 22: 1229-1237.
[69] Delaney P., Choi H. J., Ihm J., Louie S. G., Cohen M. L., (1999), Broken symmetry and pseudogaps in ropes of carbon nanotubes. Physic. Rev. B. 60: 7899-7905.
[70] Mohlala M. S., Liu X.-Y., Robinson J. M., Coville N. J., (2005), Organometallic precursors for use as catalysts in carbon nanotube synthesis. Organometallics. 24: 972-976.
[71] Takagi D., Hibino H., Suzuki S., Kobayashi Y., Homma Y., (2007), Carbon nanotube growth from semiconductor nanoparticles. Nano Lett. 7: 2272-2275.
[72] Ohta Y., Okamoto Y., Irle S., Morokuma K., (2009), Density-functional tight-binding molecular dynamics simulations of SWCN growth by surface carbon diffusion on an iron cluster. Carbon. 47: 1270-1275.
[73] Yuan D., Ding L., Chu H., Feng Y., McNicholas T. P., Liu J., (2008), Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 8: 2576-2579.
[74] Zhou W., Han Z., Wang J., Zhang Y., Jin Z., Sun X., Li Y., (2006), Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 6: 2987-2990.
[75] Steiner III S. A., Baumann T. F., Bayer B. C., Blume R., Worsley M. A., MoberlyChan, W. J., Hofmann S., (2009), Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single-and multiwall carbon nanotubes. J. Am. Chem. Soc. 131: 12144-12154.
[76] Allaedini G., Aminayi P., Tasirin S. M., (2015), The effect of alumina and magnesia supported germanium nanoparticles on the growth of carbon nanotubes in the chemical vapor deposition method. J. Nanomater. 501: 961231.
[77] Uchino T., Bourdakos K. N., Ayre G. N., De Groot C. H., Ashburn P., Smith D. C., (2008), Cmos compatible synthesis of carbon nanotubes. Paper presented at the MRS Proceedings.
[78] Dasgupta K., Venugopalan R., Dey G., Sathiyamoorthy D., (2008), Novel catalytic route to bulk production of high purity carbon nanotube. J. Nanopart. Res. 10: 69-76.
[79] Li Y., Liu J., Wang Y., Wang Z. L., (2001), Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13: 1008-1014.
[80] Trojanowicz M., (2006), Analytical applications of carbon nanotubes: A review. TrAC, Trends Anal. Chem. 25: 480-489.
[81] Rümmeli M. H., Bachmatiuk A., Börrnert F., Schäffel F., Ibrahim I., Cendrowski K., Cuniberti G., (2011), Synthesis of carbon nanotubes with and without catalyst particles. Naoscale Res. Lett. 6: 1-9.
[82] Li W., Wen J., Sennett M., Ren Z., (2003), Clean double-walled carbon nanotubes synthesized by CVD. Chem. Phys. Lett. 368: 299-306.
[83] Qian C., Qi H., Liu J., (2007), Effect of tungsten on the purification of few-walled carbon nanotubes synthesized by thermal chemical vapor deposition methods. J. Phys. Chem. C. 111: 131-133.
[84] Ohta Y., Okamoto Y., Page A. J., Irle S., Morokuma K., (2009), Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle. ACS Nano. 3: 3413-3420.
[85] Wang X., Yue W., He M., Liu M., Zhang J., Liu Z., (2004), Bimetallic catalysts for the efficient growth of swnts on surfaces. Chem. Mater. 16: 799-805.
[86] Fan S., Chapline M. G., Franklin N. R., Tombler T. W., Cassell A. M., Dai H., (1999), Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 283: 512-514.
[87] Azam M. A., Manaf N. S. A., Talib E., Bistamam M. S. A., (2013), Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics. 19: 1455-1476.
[88] Cassell A. M., Verma S., Delzeit L., Meyyappan M., Han J., (2001), Combinatorial optimization of heterogeneous      catalysts used in the growth of carbon nanotubes. Langmuir. 17: 260-264.
[89] Amama P. B., Pint C. L., Kim S. M., McJilton L., Eyink K. G., Stach E. A., Maruyama B., (2010), Influence of alumina type on the evolution and activity of alumina-supported fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano. 4: 895-904.
[90] Messina G., Modafferi V., Santangelo S., Tripodi P., Donato M., Lanza M., Pistone A., (2008), Large-scale production of high-quality multi-walled carbon nanotubes: Role of precursor gas and of fe-catalyst support. Diamond Relat.       Mater. 17: 1482-1488.
[91] Dupuis A.-C., (2005), The catalyst in the CCVD of carbon nanotubes: A review. Prog. Mater. Sci. 50: 929-961.
[92] Ni L., Kuroda K., Zhou L.-P., Kizuka T., Ohta K., Matsuishi K., Nakamura J., (2006), Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon. 44: 2265-2272.
[93] Dikio E. D., Kupeta A. J., Thema F. T., (2014), A comparative study of the effect of MgO and CaCO3 as support materials in the synthesis of carbon nanotubes with Fe/Co as catalyst. J. Chem. 2014: 6-12.
[94] Szabó A., Perri C., Csató A., Giordano G., Vuono D., Nagy J. B., (2010), Synthesis methods of carbon nanotubes and related materials. Materials. 3: 3092-3140.
[95] Okai M., Muneyoshi T., Yaguchi T., Sasaki S., (2000), Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77: 3468-3470.
[96] Meyyappan M., Delzeit L., Cassell A., Hash D., (2003), Carbon nanotube growth by pecvd: A review. Plasma Sources Sci. Technol. 12: 205-208.
[97] Takenaka S., Ogihara H., Yamanaka I., Otsuka K., (2001), Decomposition of methane over supported-Ni catalysts: Effects of the supports on the catalytic lifetime. Appl. Catal. A: General. 217: 101-110.
[98] Choudhary T., Sivadinarayana C., Chusuei C. C., Klinghoffer A., Goodman D., (2001), Hydrogen production via catalytic decomposition of methane. J. Catal. 199: 9-18.
[99] Carneiro O., Anderson P., Rodriguez N., Baker R., (2004), Decomposition of CO-H2 over graphite nanofiber-supported iron and iron-copper catalysts. J. Phys. Chem. B. 108: 13307-13314.
[100] Snoeck J.-W., Froment G., Fowles M., (1997), Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth. J. Catal. 169: 240-249.
[101] PS H., (2006), Influence of the metal and support in the synthesis of carbon nanotubes by chemical vapor deposition. Bullet. Catal. Soc. India. 5: 79-86.
[102] Oliveira H. A., Franceschini D. F., Passos F. B., (2012), Support effect on carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts. J. Braz. Chem. Soc. 23: 868-879.
[103] Nagy, V. I., (1994), A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science. 265: 635-639.
[104] Liu W. W., Adam T., Aziz A., Chai S. P., Mohamed A. R., Hashim U., (2014), A study on the effect of calcination temperature on the graphitization of carbon nanotubes synthesized by the decomposition of methane. Adv. Mater. Res. 832: 56-61.
[105] Eres G., Rouleau C., Yoon M., Puretzky A., Jackson J., Geohegan D., (2009), Model for self-assembly of carbon nanotubes from acetylene based on real-time studies of vertically aligned growth kinetics. J. Phys. Chem. C. 113: 15484-15491.
[106] Chen M., Goodman D., (2004), The structure of catalytically active gold on titania. Science. 306: 252-255.
[107] Eppler A. S., Rupprechter G., Guczi L., Somorjai G. A., (1997), Model catalysts fabricated using electron beam lithography and pulsed laser deposition. J. Phys. Chem. B. 101: 9973-9977.
[108] Tong X., Benz L., Kemper P., Metiu H., Bowers M. T., Buratto S. K., (2005), Intact size-selected au N clusters on a TiO2 (110)-(1× 1) surface at room temperature. J. Am. Chem. Soc. 127: 13516-13518.
[109] Haruta M., (1997), Size-and support-dependency in the catalysis of gold. Catal. Today. 36: 153-166.
[110] Menacherry P. V., Haller G. L., (1998), Electronic effects and effects of particle morphology in n-Hexane conversion over zeolite-supported platinum catalysts. J. Catal. 177: 175-188.
[111] Irurzun V. M., Tan Y., Resasco D. E., (2009), Sol-gel synthesis and characterization of Co− Mo/Silica catalysts for single-walled carbon nanotube production. Chem. Mater. 21: 2238-2246.
[112] Hosseini A. A., Abhari F. S., Taleshi F., (2011), The effects of Fe/Al2O3 preparation technique as a catalyst on synthesized CNTs in CVD method. Sci. J. Phys. 2012: 1-8.
[113] Biris A. R., Li Z., Dervishi E., Lupu D., Xu Y., Saini V., Biris A. S., (2008), Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a FeMo/MgO catalytic system. Phys. Lett. A. 372: 3051-3057.
[114] Chhowalla M., Teo K., Ducati C., Rupesinghe N., Amaratunga G., Ferrari A., Milne W., (2001), Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90: 5308-5317.
[115] Moshkalyov S., Moreau A., Guttiérrez H., Cotta M., Swart, J., (2004), Carbon nanotubes growth by chemical vapor deposition using thin film Nickel catalyst. Mater. Sci. Eng: B. 112: 147-153.
[116] Saraswat S. K., Pant K., (2012), Thermo catalytic decomposition of methane–A novel approach to COx free hydrogen and carbon nanotubes production over Ni/SiO2 catalyst. Energy and Environ. Eng. J. 1: 81-85.
[117] Puretzky A. A., Geohegan D. B., Jesse S., Ivanov I. N., Eres G., (2005), In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl. Phys. A. 81: 223-240.
[118] Saengmee-anupharb S., Thongpang S., Bertheir E. S., Singjai P., (2011), Growth of vertically aligned carbon nanotubes on silicon using a sparked iron-cobalt catalyst. Int. Scholarly Res. Notices. 2011, Article ID 684748, 8 pages.
[119] Chen C., Lou Z., (2009), Formation of C60 by reduction of CO2. J. Supercrit. Fluids. 50: 42-45.
[120] Xiang R., Yang Z., Zhang Q., Luo G., Qian W., Wei F., Maruyama S., (2008), Growth deceleration of vertically aligned carbon nanotube arrays: Catalyst deactivation or feedstock diffusion controlled? J. Phys. Chem. C. 112: 4892-4896.
[121] Wojciechowski B., (1998), The reaction mechanism of catalytic cracking: Quantifying activity, selectivity, and catalyst decay. Catalysis Rev. 40: 209-328.
[122] Liao H., Hafner J. H., (2004), Low-temperature single-wall carbon nanotube synthesis by thermal chemical vapor deposition. J. Phys. Chem. B. 108: 6941-6943.
[123] Allaedini G., Tasirin S. M., Sahri J., Talib M., Zainal M., (2014), The effect of Co/Pd MgO supported catalyst calcination temperature on the yield and morphology of cnts via methane decomposition. Adv. Mater. Res. 983: 148-151.
[124] Sivakumar V., Abdullah A., Mohamed A., Chai S., (2010). Studies on carbon nanotube synthesis via methane cvd process using CoOX as catalyst on carbon supports. Digest. J. Nanomater. Biostruc. (DJNB). 5: 691-696.
[125] Sengupta J., Jacob C., (2010), Pre-heating effect on the catalytic growth of partially filled carbon nanotubes by chemical vapor deposition. J. Nanosci. Nanotechnol. 10: 3064-3071.
[126] Inami N., Ambri Mohamed M., Shikoh E., Fujiwara A., (2007), Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method. Sci. Technol. Adv. Mater. 8: 292-295.