Scanning impedance microscopy (SIM): A novel approach for AC transport imaging

Document Type : Review

Authors

Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, Tehran, Iran

10.7508/ijnd.2016.04.002

Abstract

Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equipped with a conductive tip (C-AFM), which is imaged by non-contact mode with harmonic detection. This method is based on the local detection of surface potential or the amplitude and phase of local voltage oscillations induced by a lateral periodic bias applied across the sample. SIM can simultaneously collect the amplitude and phase signals and image the morphology of the surfaces; afterward, calculate the corresponding histogram for each map. Hence, the amplitude and phase signals of the surface potential oscillations are related to the sample impedance. SIM can also be integrated with Surface Potential Microscopy (SSPM). The combination of these techniques provides an approach for the quantitative analysis of local DC and AC transport properties. These advantages give SIM a higher resolution than other SPM techniques and indicate its immense potential for vast applications. The combination of SSPM and SIM were demonstrated for a Schottky diode, but can be applied to any semiconductor device.

Keywords

Main Subjects


[1] Bottomley L. A., Coury J. E., First Ph. N., (1996), Scanning Probe Microscopy. Anal. Chem. 68: 185R-230R.
[2] Poggi M. A., Gadsby E. D., Bottomley L. A., (2004), Scanning Probe Microscopy. Anal. Chem. 76: 3429-3444.
[3] Sadegh Hassani S., Aghabozorg H. R., (2011), Recent Advances in Nanofabrication Techniques and Applications, Chapter title: Nanolithography Study Using Scanning Probe Microscope.
[4] Fedor J., (2004), New approaches in scanning probe microscopy for magnetic field imaging, thesis.
[5] Bonnell D. A., Basov D. N., Bode M., Diebold U., Kalinin S. V., Madhavan V., Novotny L., Salmeron M., Schwarz U. D., Weiss P. S., (2012), Imaging physical phenomenawith local probes: From electrons to photons. Rev. Mod. Phys. 84: 1343-1381.
[6] Bandarenka A. S., Maljusch A., Kuznetsov V., Eckhard K., Schuhmann W., (2014), Localized Impedance Measurements for Electrochemical Surface Science. J. Phys. Chem. C.  118: 8952−8959.
[7] Yu M. F., Files B. S., Arepalli S., Ruoff R. S, (2000), Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84: 5552-5556.
[8] Yu M. F., Lourie O., Dyer M. J., Moloni K., Kelly T. F. Ruoff R. S, (2000), Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 287: 637-676.
[9] Bhushan B., (2010), Scanning Probe Microscopy in Nanoscience and Nanotechnology. Springer, Berlin.
[10] Bhushan B., Fuchs H., Tomitori M., (2008), Applied Scanning ProbeMethods VIII.  289-314, Springer-Verlag, New York.
[11] Kholkin A., Kalinin S. V., Roelofs A., Gruverman A., (2007), Scanning probe microscopy: electrical and electromechanical phenomena at the nanoscale. Springer Science Business Media, New York.
[12] Kalinin S. V., Bonnell D. A., (2002), Scanning impedance microscopy of electroactive interfaces. Appl. Phys. Lett.  78: 1306-1311.
[13] Kalinin S. V., Bonnell D. A., (2001), Scanning Impedance Microscopy: From Impedance Spectra to Impedance Images. Mat. Res. Soc. Symp. Proc. 699: R.1.2.2-R.1.2.6.
[14] Sugawara Y., Ohta M., Hontani K., Morita S., Osaka F., Ohkouchi S., Suzuki M., Nagaoka H.,  Mishima S., Okada T., (1994), Observation of GaAs (110) Surface by an Ultrahigh-Vacuum Atomic-Force Microscope. Jpn. J. Appl. Phys. 33: 3739-3742.
[15] Ohta M., Konishi T., Sugawara Y., Morita S., Suzuki M., Enomoto Y., (1993), Observation of Atomic Defects on LiF (100) Surface with Ultrahigh Vacuum Atomic Force Microscope (UHV AFM). Jpn. J. Appl. Phys. 32: 2980-2982.
[16] Fiorenza P., Nigro R. L., Bongiorno C., Raineri V., Ferarrelli M. C., Sinclair D. C., West A. R., (2008), Localized electrical characterization of the giant permittivity effect in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 92: 182907-11.
[17] Vilarinho P. M., Rosenwaks Y., Kingon A., (2002), Scanning probe microscopy: Characterization, nanofabrication and device application of functional materials, series II: Mathemat. Phys. Chem. 186: 3-33.
[18] Bonnell D. A., Kalinin S. V., (2013), Scanning Probe Microscopy for Energy Research, USA.
[19] Fiorenza P., Nigro R. L., Raineri V., Toro R. G., Rita M., (2007), CatalanoNanoscale imaging of permittivity in giant - k CaCu3 Ti4 O12 grains. J. Appl. Phys. 102: 116103-9.
[20] Fiorenza P., Nigro R. L., Raineri V., (2010), Probing dielectric ceramics surface at sub-micrometer scale, IOP Conf. Series: Mater. Sci. Engineer. 8: 012038-42.
[21] Kalinin S. V., Bonnell D. A., (2002), Scanning impedance microscopy of an active Schottky barrier diode. J. Appl. Phys. 91: 832-836.
[22] Kalinin S. V., Bonnell D. A., (2001), Scanning impedance microscopy of electroactive interfaces. 78: 1306, ISBN 9780387236087.
[23] Kalinin S. V., Suchomel M. R., Davies P. K., Bonnell D. A., (2002), Potential and Impedance Imaging of Polycrystalline BiFeO3 Ceramics. J. Am. Ceram. Soc. 85: 3011–3017,
[24] Schwarz A., Allers W., Schwarz U. D., Wiesendanger R., (2000), Phys. Rev. B. 32: 13617-13621.
[25] Kalinin S. V., Bonnell D. A., (2000), Surface potential at surface-interface junctions in SrTiO3 bicrystals. Phys. Rev. B. 62: 10419-10430.
[26] Shikler R., Fried N., Meoded T., Rosenwaks Y., (2000), Measuring Minority-Carrier Diffusion Length Using a Kelvin Probe Force Microscope. Phys. Rev. B. 61: 11041-11046.
[27] Shikler R., Meoded T., Fried N., Rosenwaks Y., (1999), Potential imaging of operating light-emitting devices using    kelvin force microscopy. Appl. Phys. Lett. 74: 2972-2974.