[1] International Technology Roadmap for Semiconductors (ITRS), (Available from: http://www.itrs.net.) (2016).
[2] Lent C. S., Tougaw P. D., (1997), A device architecture for computing with quantum dots. Proceed. IEEE. 85: 541-557.
[3] Lent C. S., Isaksen B., Lieberman M., (2003), Molecular quantum dot cellular automata. J. Am. Chem. Soc. 125: 1056–1063.
[4] Bajec L., Zimic N., Mraz M., (2006), Towards the bottom-up concept: Extended quantum-dot cellular automata. Microelect. Eng. 83: 1826–1829.
[5] Snider G. L., Orlov A. O., Amlani I., Bernstein G. H., Lent C. S., Merz J. L., (1999), Quantum-dot cellular automata. Microelectronic Eng. 47: 261–263.
[6] Mardiris V. A., Ioannis G., (2010), Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int. J. Circuit Theory and Appl. 38: 771–785.
[7] Yang X., Cai L., Huang H., Zhao X., (2012), A comparative analysis and design of quantum-dot cellular automata memory cell architecture. Int. J. Circuit Theory and Appl. 40: 93–103.
[8] Liu M., (2006). Robustness and power dissipation in quantum-dot cellular automata. PhD thesis. Notre Dame University.
[9] Askari M., Taghizadeh M., (2011), Logic circuit design in nano-scale using quantum-dot cellular automata. Europ. J. Sci. Res. 48: 516-526.
[10] Zhang R., Walnut K., Wang W., Jullien G., (2012), A method of majority logic reduction for quantum cellular automata. IEEE. 3: 443-450.
[11] Azari A., Zabihi S. A., Seyyedi S. K., (2012), Conductance in quantum wires by three quantum dots arrays. Int. J. Nano Dimens. 2: 213-216.
[12] Purkayastha T., De D., Chattopadhyay T., (2016), Universal shift register implementation using quantum dot cellular automata. Ain Shams Engineering J. In Press, Corrected Proof.
[13] Kumar D., Mitra D., (2016), Design of a practical fault-tolerant adder in QCA. Microelectronic. J. 53: 90-104.
[14] Majumder A., Singh P. L., Chowdhury B., Mondal A. J., Anand V., (2015), Efficient design and analysis of N-bit reversible shift registers. Procedia Computer Sci. 57: 199-208.
[15] Gladshtein M., (2016), Quantum-dot cellular automata serial decimal processing-in-wire: Run-time reconfigurable wiring approach. Microelectron. J. 55: 152-161.
[16] Heikalabad S., Navin R., Hosseinzadeh A. H. M., (2016), Content addressable memory cell in quantum-dot cellular automata. Microelect. Eng. 163: 140-150.
[17] Lent C. S., Tougaw P. D., Porod W., (1993), Quantum cellular automata. Nanotechnol. 4: 49-57.
[18] Kim K., (2006), Quantum-dot cellular automata design guideline. EICE transactions on funda-mentals of electronics. Communicat. Computer Sci. 89: 1607-1614.
[19] Mustafa M. , Beigh M. R., (2014), Novel linear feedback shift register design in Quantum Dot celullar automata. Indian J. Pure and Appleid Physic. 52: 203-209.
[20] Keikha A., Dadkhah C., Tehrani M., Navi K., (2011), A novel design of a random generator circuit in QCA. Int. J. Comp. Applic. 35: 30-36.
[21] Petrie C. S., Connelly J., (2000), A noise-based IC random number generator for applications in cryptography. IEEE Transact. Circuits and Systems. 47: 615-621.
[22] Bucci M., Germani L., Luzzi R., Trifiletti A., Varanonuovo M., (2003), A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Transact. Computers. 52: 403-409.
[23] Brederlow R., Prakash R., Paulus C., Thewes R., (2006), A low power true random number generator using random telegraph noise of single oxide-traps. IEEE Int. Solid-State Circuits Conference (ISSCC). 1666-1675.
[24] Pareschi F., Setti G., and Rovatti R., (2006), A fast chaos-based true random number generator for cryptographic applications. Proceedings of the 32nd European Solid-State Circuits Conference. 130-133.
[25] Tokunaga C., Blaauw D., Mudge T., (2008), True random number generator with a metastability-based quality control. IEEE J. Solid-State Circuits. 43: 78-85.
[26] Holleman J., Member S., Bridges S., Otis B. P., Diorio C., (2008), A 3W CMOS true random number generator with adaptive floating-gate offset cancellation. IEEE J. Solid-State Circuits. 43: 1324 - 1336.
[27] Pareschi F., Setti G., Rovatti R., (2010), Implementation and testing of high-speed CMOS True random number generators based on chaotic systems. IEEE Transact. Circuits and Systems. 57: 3124 - 3137.
[28] Cao F., Li S., (2010), Random numbers from an integrated CMOS double-scroll IEICE Electronics Express. 7: 1382-1387.
[29] Chen W., Che W., Bi Z., Wang J., Yan N., Tan X., (2009), A 1.04 µW truly random number generator for gen2 RFID tag. IEEE Asian Solid-State Circuits Conference. 117-120.