[1] Linsebigler A. L., Lu G., Yates J. T., (1995), Photocatalysis on TiO2. Chem. Rev. 95: 735-758.
[2] Diebold U., (2003), The surface science of titanium dioxide. Surf. Sci. Rep. 48: 53−229.
[3] Fujishima A., Zhang X., Tryk, D. A., (2008), TiO2 photocatalysis and related surface phenomena. J. Surf. Sci. Rep. 63: 515−582.
[4] Henderson M. A., (2011), A surface science perspective on TiO2 photocatalysis. J. Surf. Sci. Rep. 66: 185−297.
[5] Banfied J. F., Veblen D. R., (1992), Conversion of perovskite to anatase and TiO2 (B): A TEM study and the use of fundamental building blocks for understanding relationships among the TiO2 minerals. J. Am. Mineral. 77: 545-557.
[6] Grätzel M., (2001), Photoelectrochemical cells. Nature. 414: 338−344.
[7] Fujishima A., Honda, K., (1972), Electrochemical photolysis of water at a semiconductor electrode. Nature. 37: 238-242.
[8] Dutta P. K., Ginwalla A., Hogg B., Patton B. R., Chwieroth B., Liang Z., Gouma P., Mills M., Akbar, S., (1999), Interaction of CO with Anatase Surfaces at High Temperatures: Optimization of a CO Sensor. J. Phys. Chem. B. 103: 4412-4422.
[9] Garfunkel E., Gusev E., Vul (Eds.) A., (1998), Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, NATO Science Series, Kluwer Academic Publishers, Dordrecht.
[10] Liu H., Zhao M., Lei Y., Pan C., Xiao W., (2012), Formaldehyde on TiO2 anatase (1 0 1): A DFT study. J. Comput. Mater. Sci. 15: 389–395.
[11] Erdogan R., Ozbek O., Onal, I., (2010), A periodic DFT study of water and ammonia adsorption on anatase TiO2 (001) slab. J. Surf. Sci. 604: 1029-1033.
[12] Onal I., Soyer S., Senken S., (2006), Adsorption of water and ammonia on TiO2-Anatase Cluster Models. J. Surf. Sci. 600: 2457–2469.
[13] Wei Z., Mei W., Xiyu S., Yachao W., Zhenyong L., (2010), Electronic and optical properties of the doped TiO2 system. J. Semiconduc. 31: 072001-072005.
[14] Liu J., Dong L., Guo W., Liang T., Lai W., (2013), CO adsorption and oxidation on N-Doped TiO2 Nanoparticles. J. Phys. Chem. C. 117: 13037-13044.
[15] Zhao D., Huang X., Tian B., Zhou S., Li Y., Du Z., (2011), The effect of electronegative difference on the electronic structure and visible light photocatalytic activity of N-doped anatase TiO2 by first-principles calculations. J. Appl. Phys. Letts. 98: 162107-162111.
[16] Tang S., Cao Z., (2011), Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. J. Chem. Phys. 134: 044710-044715.
[17] Rumaiz A. K., Woicik J., Cockayne C. E., Lin H. Y., Jaffari G. H., Shah S. I., (2009), Oxygen vacancies in N doped TiO2: Experiment and first principle calculations. J. Appl. Phys. Lett. 95: 262111-262115.
[18] Chen Q., Tang C., Zheng G., (2009), First–principles study of TiO2 anatase (101) surfaces doped with N. J. Physica. B: Condensed Matter. 404: 1074–1078.
[19] Jia L., Wu C., Han S., Yao N., Li Y., Li Z., Chi B., Pu J., Jian, L., (2011), Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping. J. Alloys and Comp. 509: 6067–6071.
[20] Liu J., Liu Q., Fang P., Pan C., Xiao W., (2012), First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. J. Appl Surf. Sci. 258: 8312-8318.
[21] Li A., Fei Y., Aschauer U., Chen J., Selloni A., (2014), Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 47 : 3361-3368.
[22] Berger T., Sterrer M., Diwald O., Knözinger E., Panayotov D., Thompson T. L., Yates, J. T., (2005), Light-Induced charge separation in Anatase TiO2 particles. J. Phys. Chem. B. 109: 6061−6068.
[23] Abbasi A., Sardroodi J. J., Ebrahimzadeh, A. R., (2016), Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: A DFT study. J. Surf. Sci. 654: 20-32.
[24] Abbasi A., Sardroodi, J. J., (2016), Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: Insights from density functional theory calculations. J. Theor. Comput. Chem. 1095: 15-28.
[25] Abbasi A., Sardroodi, J. J., (2016), N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: Insights from DFT computations. J. Environ. Sci.: Nano. 3: 1153-1164.
[26] Otoufi M. K., Shahtahmasebebi N., Kompany A., Goharshadi E., (2014), Systematic growth of Gold nanoseeds on silica for Silica@Gold core-shell nanoparticles and investigation of optical properties. Int. J. Nano. Dimens. 5: 525-531.
[27] Ebrahimzadeh A. R., Abbasi M., Afshari S., (2015), Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles. Int. J. Nano Dimens. 6: 11-17.
[28] Sardroodi J. J., Afshari S., Ebrahimzadeh A. R., Abbasi M., (2015), Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths. Int. J. Nano Dimens. 6: 105-109.
[29] Abbasi A., Nadimi E., Planitz P., Radehaus C., (2009), Density functional study of the adsorption of aspirin on the hydroxylated (0 0 1) α-quartz surface. J. Surf. Sci. 603: 2502-2506.
[30] Hohenberg P., Kohn W., (1964), Inhomogeneous Electron Gas. Phys. Rev. 136: B864–B871.
[31] Kohn W., Sham L., (1965), Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140: A1133–A1138.
[32] The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site ‘http://www.openmxsquare.org’.
[33] Ozaki T., (2003), Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B. 67: 155108-155111.
[34] Perdew J. P., Burke K., Ernzerhof M., (1997), Generalized Gradient Approximation Made Simple. Phys. Rev. Letts. 78: 1396-1399.
[35] Koklj A., (2003), Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28: 155−168.
[36] Web page at: http://rruff.geo.arizona.edu/AMS/amcsd.php.
[37] Wyckoff, R. W. G., (1963), crystal structures, Second edition. Interscience Publishers, USA, New York.