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Abstract
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, 
smaller size, and low power consumption than semiconductor transistor based technologies. Previously, 
adder designs based on conventional designs were examined for implementation with QCA technology. 
This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more powerful in terms of 
implementing robust digital functions. By considering two-dimensional arrays of QCA cells, fault properties 
of such block adder can be analyzed in terms of misalignment, missing and dislocation cells. In order to 
verify the functionality of the proposed device, some physical proofs are provided. The results confirm our 
claims and its usefulness in designing digital circuits.
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INTRODUCTION
Quantum-dot cellular automata (QCA) have 

been recognized as one of the new technologies 
that may replace semiconductor transistor based 
technologies at the nano-scale level. The principle 
of QCA was first proposed by Lent and Tougaw 
[1]. The superior features of QCA over current 
CMOS VLSI devices along with the feasibility 
of designing logic gates, circuits, and massively 
parallel architectures indicate the potential of 
QCA as a promising novel computing paradigm. 
In the sense that it would potentially allow the 
implementation of massively parallel computing 
architectures which could outperform the current 
CMOS VLSI counterparts in every performance 
aspect, that is, integration density, power 
consumption, and speed, while also enabling new 
applications by overcoming inherent limitations of 
VLSI technology [2].

There are, however, several obstacles for a 
practical realization of QCA and exploiting full 
potential of this new technology. Here, it suffices 
to mention the following issues:

The first major obstacle is the realization of 
QCA hardware capable of performing in room 

temperature. Current semiconductor technologies 
that are being considered for the QCA 
implementation would operate only in cryogenic 
temperatures due to the large size of the cells. 
This, in turn, has motivated the investigation of 
molecular realization of QCA. The smaller size of 
molecules means that Coulomb energies are much 
larger, so room temperature operation is possible. 
In fact, there are indicates that realization of QCA-
based molecular devices capable of functioning 
in the current commercial regime is possible. It 
should be mentioned that the focus of our work is 
on electronic realization of QCA devices as opposed 
to magnetic realization. It has been demonstrated 
that magnetic quantum dots, despite their large 
size, can operate at room temperature.

The second obstacle is the means by which input 
state is fixed and the output state is measured. 
Obviously, the issue of connecting the nano-world 
to the micro-world is one that is germane to all 
type of nano-devices.

The third issue is the required precision in the 
assembly and tolerance to fabrication defect. In 
fact, it is widely believed that QCA devices and 
circuits will highly sensitive to imprecision in their 
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assembly. Here again it seems that molecular 
implementation provides an additional advantage 
by allowing the use of various self-assembly 
techniques. However, there are still questions as 
to whether molecular self-assembly techniques 
would give sufficient control over cell positioning.

In this note, we will not address the first and 
second item. We will focus on an approach to 
overcome some of the issues related to the third 
item. Our approach is based upon considering 
two-dimensional arrays of QCA cells. Assuming a 
certain amount of blocks in the assembly of the 
QCA cells, it is still possible to design circuits that 
perform the desired functions despite their faulty 
assembly. This is the direction that we have been 
pursuing for designing fault tolerant QCA adders.
Two fundamental units of QCA based design 
are majority and inverter gates; hence, efficient 
construction of QCA circuits using majority and 
inverter has attracted a lot of attention [3-18]. 

A single-bit full-adder can be implemented 
by using only majority and inverter gates [11-
12, 19]. As full-adder is the principle element of 
the arithmetic systems, its performance directly 
affects the performance of the entire system. 
Hence, efficiently constructing a full-adder in QCA 
is of great importance [9-13, 20-22].

Fault-tolerant design of QCA logic circuits is 
absolutely necessary for characterization of defective 
behavior of QCA circuits. In recent years the fault 
tolerance properties of QCA circuits has been 
demonstrated by many researchers [4-8, 23-28].

As already mentioned, full-adder is the basic 
element of QCA circuits; this note investigates 
a new design for fault-tolerant full-adder that 
offers remarkable robustness with respect to 
misalignment, missing and dislocation cells. The 
presented methods justified based on some 
physical models. Improving the robustness of the 
full-adders leads to efficient designing of many 
fault-tolerant arithmetic circuits such as adders. 
A robust adder can be implemented only with 
proposed fault-tolerant full-adder.

QCA background
Quantum cellular automata are new device 

architecture, which is proper for the nanometer 
scale. The basic computational element in QCA is 
a quantum cell. A quantum cell can be viewed as a 
set of four charge dots, positioned at the corners 
of a square. The cell contains two extra mobile 
electrons, which are allowed to tunnel between 

neighboring sites [19, 30]. The electrons are forced 
to the corner positioned by columbic repulsion. 
The two possible polarization states represent 
logic “0” and “1” as shown in Fig. 1(a) [19, 30].

As shown in Fig. 1(b), an ordinary QCA majority 
gate requires only five QCA cells; three inputs 
labeled A, B and C, the device cell and the output. 
The logic function of majority gate is: 
M(A,B,C) = AB+AC+BC                                               (1)                                 

Also as shown in Fig. 1(c), each single-bit full-
adder can be implemented with only inverters 
and majority gates. The device has three inputs: 
two operands a, b, and the previous carry result. 
The two outputs are the sum Sum and the carry 
bit Carry. Full-adder cells can be easily chained 
together to produce a multi-bit adder [22]. And in 
Fig. 1(d) a QCA inverter is shown.

Advantages and Difficulties of QCA-based design
QCA offers several distinct advantages over 

traditional technologies: (1) This schema inherently 
allows for very small feature size and thus high 
computational density. (2) Because current 
does not flow through QCA-based circuits, these 
designs can operate at very low power levels. This 
low power cost is vital to being able to achieve the 
device densities. (3) QCA design support massively 
parallel computational architectures, which can 
allow for more efficient information processing.

Many obstacles must be overcome before 
QCA-based circuits are available as a viable 
technology: (1) quantum cells must be small, on 
the order of 18nm, to be efficient. Currently the 
technology does not exist to reliably manufacture 
quantum cells of this size and assemble them 
into particular structures. Fortunately much time 
and effort is being spent on these scale related 
issues. (2) As with any technology on this scale, 
it is difficult to create interfaces between the 
computational circuits and I/O devices such 
as monitors and keyboards that would allow 
the user to interact with the computer. Also 
this limitation is face by other technologies. (3) 
QCA structures exhibit propagation delays. This 
delay can be attributed to the finite amount of 
time that it takes for the electrons in a cell to 
tunnel to their new position [4]. (4) In addition to 
robustness capabilities of any future QCA device, 
another difficulty in its practical implementation 
is patterning a circuit. That is, if a simple gate 
is used within a QCA circuit then a high degree 
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of accuracy is needed for proper alignment of 
cells. With today’s technology, it is very hard to 
assemble a specific pattern, let alone making it 
precise. This issue should also be considered in the 
context of another problem associated with the 
manufacturing of massive arithmetic circuits. It is 
believed that QCA architectures could eventually 
be implemented with self-assembled molecules, 
although there are no candidates as yet and there 
are questions to whether molecular assemblies 
would give enough control over cell positioning [2, 
4]. This suggested that, while great QCA array with 
a very large number of cells can be implemented, 
the exact position of cells would be hard to 
control. In other words, practical implementation 
QCA array would represent a high degree of fault 
in cell positioning.

This has motivated us to investigate the design 
of QCA devices from a different perspective. In 
fact, instead of analyzing the behavior of a single 
cell, we have analyzed the behavior of two-
dimensional arrays of cells for designing fault-
tolerant QCA device [6-8].

Faults and Fault tolerance
Three major categories of faults can occur 

during the assembly of a QCA circuit. First, 
faults may occur when quantum cells are shifted 

from their intended locations which are called 
“misalignment” cells. Sometimes misalignment 
cells have no effect on functionality of a QCA 
circuit, and also sometimes they can cause a circuit 
to have an unexpected output. A second type 
of faults occurs when the quantum cell itself is 
“missing” resulting in the cell becoming defective 
and it would have no influence on its neighbors 
and it can cause a circuit to cease functioning well. 
A third type of faults occurs when quantum cells 
are rotated relative to the other cells in the array 
which is called “dislocation” cells. Also, in this 
case, the circuit may cease to function.

Fig. 2(a) shows misalignment cell in a full-
adder. Obviously, due to symmetric, the 
direction of the cell movement is not important 
and it may cause the design does not function as a 
full-adder. In Fig. 2(b), a missing cell in full-adder is 
presented that the design may cease to function. 
As shown in Fig. 2(c), the dislocation cell with 
45 ̊ rotation angle, also can cause a full-adder to 
have unexpected output. Based on the researches 
which have been performed to date, some fault-
tolerant QCA circuits have been with faults. In 
next section, we have attempted to make a novel 
fault-tolerant full-adder using physical relation; 
in such a manner that it can continue to operate 
correctly in the event of the mentioned faults.

Fig. 1: a) Basic QCA cell and binary encoding, b) A three-input majority gate, c) A single-bit full-adder (d) A QCA inverter.
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Fig. 1: a) Basic QCA cell and binary encoding, b) A three-input majority gate, c) A single-bit full-adder (d) A QCA 
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EXPERIMENTAL
Computational Methods
Fault-tolerant full-adder and fault-tolerant adder

The basis of functioning of the full-adder can 
be easily understood by considering Coulomb 
interaction among four neighboring QCA cells. 
However, this also suggested that the correct 
function of such a device would strongly depend 
on the precision and geometry of its implantation. 
In order to assess the impact of the precision 
and geometry, we have studied and validated 
various configurations for implementation of the 
full-adder. This validation is performed by some 
physical relations using kink energy.

The layout of the proposed fault-tolerant full-
adder is shown in Fig. 3. In this new structure, a 
fault-tolerant full-adder can be implemented only 
with fault-tolerant majority and inverter gates. 
In this scheme we have three inputs labeled a, 
b and  c and two output cells are shown by Sum 
and Carry. In addition, three block 9th middle cells 
labeled Block1, Block2 and Block3, and seven 
block 4th middle cells labeled 1, 2, 3, 4, 5, 6 and 7. 
Polarization of input cells is fixed and middle cells 
and output cells are free to change. The rest of 
cells are considered as wire. 

As already mentioned, the property of all blocks 
is depending on number and position of device 
cells in each block. These remarkable collective 
of QCA cells are important from robustness point 
of view and they may also alleviate some of the 

problems related to patterning circuits.
The proposed design is based on majority 

and inverter blocks that allow several paths of 
information travel between inputs and outputs. 
This design allows some faults to be cancelled out 
by cells in blocks that are in correct state. Using 
the layout of fault-tolerant full-adder, we design a 
fault-tolerant four-bit QCA adder as shown in Fig. 4. 
Regarding the physical proofs, assume that all cells 
are similar and the length of each one is (a=18 nm) 
and there is a space of x (x=2nm) between each 
two neighbors. In all figures, rectangles show a 
QCA cell and the circles inside show the electrons 
within that cell. It should be noted that in order 
to achieve more stability, electrons of QCA cell are 
arranged in such a manner that reaches minimum 
kink energy (the difference in electrostatic energy 
between the two polarization states).  The kink 
energy between two electron charges is calculated 
using Eq. (2a). In this equation, U is kink energy, k 
is fixed colon, q1 and q2 are electric charges and 
r is the distance between two electric charges. 
By putting the values of k and q, we obtain Eq. 
(2b). UT is the summation of kink energies that is 
calculated from Eq. (3) [31].

𝑈𝑈 𝑘𝑘𝑞𝑞 𝑞𝑞
𝑟𝑟            (2a) 

     (2b) 

𝑈𝑈𝑇𝑇  𝑈𝑈𝑖𝑖𝑖𝑖        (3) 
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Fig. 2: Faults of single-bit full-adder, a) misalignment cell, b) missing cell and c) dislocation cell
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Fig. 3: Layout of proposed fault-tolerant full-adder.

Fig. 4: Layout of proposed fault-tolerant four-bit adder.
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RESULTS AND DISCUSSIONS
Physical Proof

As the proposed design has 55 different middle 
cells, we should check all the faults that may occur 
in middle cells to verify the correctness of this 
scheme. Here, only one of the faults (missing cell 
5 in Block3) is proved and the others can be proved 
as well. The assumed value of input cells are a=b=0 
and c=1.  

First, we calculate the kink energy existing 
between each electron (e1, e2, e3, e4, e5, e6, e7, e8, 
e9 and e10) with electrons “x” and “y” in (a) and (b) 
states using (2a) and (2b) equations. For example 
Ui is the kink energy existing between electrons  ei 
and x (or y). Also, ri is the distance between two 
electron charges. Then we calculate the total 
kink energy (UT) in both states using Eq. (3). The 
comparison of total kink energies in both (a) and 
(b) states shows that which state (a or b) is more 
stable. We consider the state that has the lower 
kink energy level as the more suitable one.

By considering the value of input cells we can 
gain the value of input cells for Block3 (a1=b1=1 
and c1=0 ).

As the proof method is similar for all cells and 
their values and also due to lack of space, only 
the first part of this proof is stated and the rest of 
relations are omitted (Fig. 5).
Fig. 5(a) (electron x) 
Fig. 5(a) (electron x)                                                                     Fig. 5(a) (electron y) 
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Since cells 1 and 3 are roughly in a long distance 

from cell 8, their kink energy can be neglected. 
It should be noted that the value of cell 8 is 
transferred to the output cell (Out), which give us 
a majority decision of inputs a1, b1 and c1.

Fig. 5(b) (electron x)
Fig. 5(b) (electron x)                                                                   Fig. 5(b) (electron y) 
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With comparison of the achieved results, the 

electrons in cell 8 are positioned in state (a) which 
is more stable and has lower kink energy. It is 
worth mentioning that in all cells UT1 is the kink 
energy in +1 polarization and UT2 is the kink energy 
in -1 polarization. 

By considering middle cells in Block3 (Fig. 3) the 
results are summarized in Table 1.

The following observation can be made from 
Table 1:
1) In all cases, proposed schemes with single 
defective cell function as the majority function or 
majority like function (majority function with one 
complemented variables).
2) Defective cell occurring on non-coherent with 
input cells (cells 1, 3, 7 and 9) does not change the 
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logic function of Block3, thus confirming the none-
defect tolerant design of a single-bit full-adder.
3) Whenever cell 8 is defective, the polarization 
level experiences a drop (about ±0.1), but it 
also acts as majority gate. In all blocks, the total 
average of maximum polarization level decreased 
by increasing the number of defective cells.
4) Since the schemes Block1, Block2 and Block3 
are similar to each other as well as schemes 1, 2, 
3, 4, 5, 6 and 7, one of the significant specifications 
of the proposed design is that it can tolerate 
multi-faults. For instance, if one of the mentioned 
faults in “Faults and Fault tolerance” section 
simultaneously occurs in Block1 and Block3 or 1, 
2 and 3 schemes, the proposed structure will still 
perform proper operation; that can be proved by 
physical relations.  

Considering the above computing, we can infer 
that the proposed structure for implementing a 
fault-tolerant full-adder is correct and resulted in a 

Fig. 5: a) The one value in cell 8, b) The zero value in cell 8.

correct state for the output cell when some faults 
occur. 

Our study demonstrated the potential of this 
new approach to the design of fault-tolerant 
QCA arithmetic circuits. These results indicate 
the superior fault tolerance properties of QCA 
arrays in terms of misalignment, dislocation and 
missing cells. The next question is whether such 
proposed design can be implemented. As the 
first step toward this end, the parallel blocks are 
distinguishing by the fact that different clocks 
drive them in a pipeline fashion. Note that the 
whole edge of the first array is used as the input 
to the second blocks. In fact, a given QCA circuit 
can be divided into a set of smaller sub-arrays by 
assigning different clocks to each sub-array. In 
such a circuit, each sub-array can perform a logic 
function similar to or different from other sub-
arrays and the output of each sub-array is used as 
input to other sub-arrays.
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CONCLUSION
A novel fault-tolerant full-adder for quantum-

dot cellular automata is presented in this paper. 
High performance logic component can be 
achieved by utilizing this fault-tolerant full-
adder. Some physical proofs have verified the 
functionality of the presented structure.  The 
proposed design demonstrates significantly more 
robust than the standard full-adder and adder 
to single or multi-faults in misalignment, missing 
and dislocation cells. Improving the robustness of 
the full-adder leads to efficient designing of many 
fault-tolerant arithmetic circuits.
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