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Abstract

In this article free vibration of a timoshenko nanobeam with variable cross-section is investigated using
nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after
Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width
through the beam length with constant thickness. Analytical solution is achieved for both Timoshenko
beams and nanobeams with different boundary conditions including both ends being simply-supported (S-
S), both ends being clamped (C-C) and one end clamped other free (C-F). It is shown that section variation
accompanying small scale effects has a noticeable effect on natural frequencies of non-uniform Timoshenko
beams at nano-scale. In order to illustrate these effects, Natural frequencies of single-layered graphene nano-
ribbons (GNRs) with various boundary conditions are obtained for different nonlocal and non-uniform
parameter which shows a great sensitivity to non-uniformity in different shape modes.
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INTRODUCTION

Nanobeams are one of the most important
nano-dimension structures which have attracted a
great deal of attention due to the extensive usage
in recent years. Lots of researches have been done
in order to understand nanomaterials mechanical,
chemical, electrical, optical and electronic
properties. Nanobeams are used in designing
atomic force microscope [1-3], nanowires [4-
6], nanoactuators [7-8] and nanoprobes [9-11].
In order to make NEMS devices more efficient,
it's necessary to use nanobeams in a more
optimum way which having a non-uniform cross-
section is one of them. Beams with geometry
properties varying along the length with the
ability to reduce weight or volume as well as to
increase strength and stability of structures have
engrossed great deal of attention in engineering
designs. Understanding mechanical behaviors of
nanostructures in both static problems such as
* Corresponding Author Email: h_bakhshi@mecheng.iust.ac.ir

bending [12-17] and buckling [18-22] and dynamic
[23-29] analysis is the key step for designing
more efficient NEMS devices. There is many
experimental and theoretical studies reported the
behavior of nanobeams. Although experimental
studies give more accurate results but conducting
experiments at nanoscale size is quite expensive
and difficult which shows the importance of
developing appropriate mathematical models.
Recently, there has been a great attention in
investigating non-uniform nanobeams behaviors.
Pandeya and Singhb [30] studied free vibration of
a nanocantilever beam with non-uniform cross-
section using finite element methods. The Euler-
Bernoulli beam model and Eringen’s nonlocal
theory were used to model the nanocantilever
nanobeam. It was shown that with the
introduction of nonlocal effects the frequency
of vibration increases. Murmu and Pradhan [31]
used differential quadrature (DQ) method to
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investigate the small-scale effect on the vibration
of non-uniform nanobeams based on nonlocal
elasticity theory which was only provided for
cantilever Euler-Bernoulli nanobeams. The study
showed that the nonlocal frequency solutions of
nanocantilever are larger compared to the classical
(local) solutions ftill a critical height ratio (CHR).
Beyond the CHR, nonlocal solutions are lower
than the classical (local) solutions. Malekzadeh
and Shojaee [32] studied the surface and nonlocal
effects on the nonlinear flexural free vibrations of
elastically supported non-uniform cross-section
nanobeams. Green’s strain tensor together with
von Karman assumptions were employed to model
the geometrical nonlinearity and DQ method with
direct iterative method was adopted to obtain the
nonlinear vibration frequencies of nanobeams
subjected to different boundary conditions. It was
shown that varying the width taper ratio, nonlocal
parameter, surface elasticity and initial stress
changes the frequency parameter of tapered
beams. Hosseini Hashemi and Bakhshi Khaniki
[33] studied Bending vibrations of non-uniform
Euler beam using the Eringen’s nonlocal elasticity
theory. Analytical solution was presented for Euler
beam theory which the rotating effects were
neglected and parametric study was presented.
They also studied the effects of this type of
non-uniformity on functionally graded beams
[34]. Lee and Chang [35] obtained the natural
frequency of a non-uniform nanocantilever beam
with consideration of surface effects using the
nonlocal elastic theory. Chakraverty and Behera
[36] presented free vibration of non-uniform
Euler-Bernoulli nanobeams based on nonlocal
elasticity theory using boundary characteristic
orthogonal polynomials implemented in the
Rayleigh-Ritz method. Chang [37] studied non-
uniform and non-homogeneous nanorods using
the theory of nonlocal elasticity. The non-uniform
and non-homogeneous nanorod was assumed
as hollow with constant thickness. Both clamped
and clamped—free boundary conditions were used
to model the nanorod. Numerical results were
presented using DQ method for first three modes
of vibration in non-uniform and non-homogeneous
nanorods. It was concluded that the nonlocal
frequency is less than the local frequency due to
the effect of small length scale. Simsek [38] studied
the free vibration of functionally graded tapered
nanorods. Nonlocal elasticity theory was used to
model the small scale effects while the material
variation was modeled using power law function.
Clamped—clamped and clamped—free boundary
conditions were considered for nanorods. Free
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vibration frequencies were obtained using
Galerkin method and the effects of nonlocal
parameter, different material composition, taper
ratio, different change of the cross-sectional area
and the boundary conditions on the free vibration
characteristics of non-homogeneous non-uniform
nanorods were discussed. Ece et al. [39] studied
the free vibration in non-uniform isotropic
thin beams. Non-uniformity was presented
by exponentially varying width with constant
thickness. Analytical solution was presented for
different boundary conditions and first, second and
fifth natural frequency was calculated. It was seen
that that the non-uniformity in the cross-section
has a great influence on the natural frequencies
and the mode shapes. Akgoz et al. [40] studied
the buckling in tapered columns in microscales
using modified strain gradient elasticity and Euler-
Bernoulli beam theory. Cantilever boundary
condition and Rayleigh-Ritz solution method were
used to achieve the critical buckling loads in this
type of non-uniform microbeams. It was shown
that critical buckling loads achieved by modified
stress theory are different from those achieved by
classical theories which show that classical theories
are unable to predict the behavior of microbeams
accurately. Zeighampour and Beni [41] studied the
free vibration of non-uniform functionally graded
nanobeams using strain gradient theory. Euler-
Bernoulli beam theory was used to model the
nanobeam and it was assumed that nanobeam is
resting on a visco-Pasternak medium and material
variation happens in longitudinal direction of
nanobeam. Linear and nonlinear non-uniformities
were discussed and numerical results were
presented using differential quadrature method.
Results shown that variation of Young’s modulus,
density, diameter of the nanobeam have a great
influence on the natural frequency of non-uniform
functionally graded nanobeams.

The dynamic characteristics of a non-uniform
Timoshenko nanobeam has far less been studied
mainly due to the complexity of analytical solution.
In the present work, analytical solution for free
vibration analysis of a non-uniform Timoshenko
nanobeam is investigated for various support
conditions using Eringen’s nonlocal elasticity
theory. It's assumed that the thickness remains
constant while the width varies exponentially
along the beam. Nonlocality, non-uniformity,
rotary inertia and shear deformation effects on
the natural frequency of the beam is studied.
Parametric study for non-uniform graphene
nanoribbon is done and a schematic view of it is
presented in Fig. 1a.
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(a)

bo

(b)

Fig. 1: Schematic view of non-uniform nanobeam (a) Model of single layered graphene nanobeam with exponentially
width variation (b) continuum beam model of a single-layered nanobeam.

PROBLEM FORMULATION
Timoshenko beam

The strain-displacement relations Based on the
Timoshenko beam theory are given by

do

€, =z—
w =2 (1)
P 2

7,\:2 ¢ dx

Where is the longitudinal coordinate measured
from the left end of the beam, z the transverse
coordinate measured from the midplane of the
beam and ¢ _is the normal strain, ¢ is the rotation
parameter due to the bending, V., the transverse
shear stress. The strain energy U is given by

L
U=1{[(0,5, +o.r.)dddx (3)
2 04

In which A and L are the cross-sectional area
and length of the beam, o_and o_ are the normal
and shear stresses. By substituting Eq. (1) and Eq.
(2) into Eq. (3), the strain energy may be expressed
as

15 d dw
U==|[lo.z%2+0, (w—] dAdx
2114 - dx - dx

Ly de aw

) 2I[M dx +Q[”’+ dx Dd"
Where M is the bending moment and Q is the

shear force defined as

(4)

M :.[Z Gxdi (5)

0= JGXZ dA (6)

Also the kinetic energy T is given by

o o ”

72

Where p is the mass density of the beam. By
assuming free harmonic motion Eq. (7) may be
expressed as

T—lpa)zj{_[Wsz+_[¢J2d1}dx (8)
2 0 L4 1

Where, w is the circular frequency of vibration
and / is the second moment of area. Governing
equation of motion is achieved using Lagrange-
Hamilton method is presented as

%

(T =Up) =0

ax

L
=f [IpszéWdA+J‘pr¢5¢dI—MM—W—Q(ﬁqxﬁdg—wndx (9)
o4 1 dx dx

With integrating by parts, we have
I|:[p1w2(p +CZ—XM—Q]5¢+[6;X—Q+pAw2W]§W:|dx
0 ' ' (10)

-[M3p), -[0oW], =0

Since 6W and 6¢ is arbitrary in 0<x<L, the
governing equations of motion are obtained as

dM

& =0-pla’yp

. 11)
—dQ:—pAwZW (

dx

Nonlocal elasticity theory

Classical elasticity theories don’t conflict the
atomic theory of lattice dynamics and experimental
observation of phonon dispersion by defining the
stress at areference pointx in an elastic continuum
depends only on the strain at that point. Eringen’s
nonlocal elasticity involves spatial integrals which
represent weighted averages of the contributions
of strain tensors of all points in the body to the
stress tensor at the given point. Basic equations
for a linear homogenous nonlocal elastic body
without the body forces are given as
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;=0
Oy (xz :,[T(‘xfxl sa)Cy (x)aV (x), VxeV (12)
&; = E(uw‘ +ujy[)

Where o, is the stress tensor, CW is the fourth-
order elasticity tensor, |x-x’| is the distance in
Euclidean form and 7(Jx-x’|,a) is the nonlocal
modulus or attenuation function incorporating
into constitutive equations the nonlocal effects
at the reference point x produced by local strain
at the source x’. a is the material constant which
is defined as (e, a/l) depends on the internal (e.g.
lattice parameter, granular distance, distance
between C-C bonds) and external (e.g. crack
length, wavelength) lengths. Due to the difficulty
of solving the integral constitutive Eq. (12) can be
simplified to equation of differential form as

(1—a2l2V2)0 =t (13)

For a one dimensional elastic material, the Eq.
(13) can be written as
2

(1-te 2 o ()=, (0

GXZ = G}/X'Z

(14)

Where (e, a) is the scale coefficient which leads
to small scale effect and E is the Young’s modulus
of the nanobeam. Multiplying Eq. (14) by zdA4 and
integrating the result over the area 4 leads to

2
2 d Az/[ =E[d7¢
dx dx

Q:KSGA((/H%) (15)
X

M —(e,a)

Where /s the second moment of area, K is the
shear correction factor and G is the shear modulus
defined using Poisson’s ratio O and Young’s
modulus as E/2(1+9). By substituting Eq. (15) into
equation (11), we have

dl
2o AY) o

d >
M EI(x)E(p—(eua)z AW +pl (x)o" “E 4 p= -

nonlocal —

(16)

In this study, cross-section of nanobeam is

assumed to vary along the beam. The characteristic

height of the cross-section or the thickness of

the beam is kept constant and the characteristic

width of the cross-section is assumed to vary
exponentially along the length of the beam as

b(x)=b,e™
bl _ bOeNl (17)
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A(x)=byhe™

A, = byh
1(x) :éb0 e (18)
I, =%b0 n

Where N is the non-uniformity parameter, b,
and b, are the width of the beam at the left and
right end of the beam shown in Fig. 1b, /, and 4,
are second moment of area and cross-section of
the beam at the left end and 7 is the thickness
of the beam. Substituting Eq. (16), Eq. (17) and
Eq. (18) into Eq. (11), the equations of motion of
non-uniform elastic isotropic nanobeam can be
derived as

o dl :
EI(x)fix(f+E7diX)—f;7KA_GA[¢7+%j+pIa)Z(p

2 , dW dA<X) ) a'l(x) ,dp
) [p”‘(")‘” e Tt (19)

S dz(p dzl(x) ) dl(x) ,do
I(x)o* 2 AW 2921y
Pl TP G et p— ot

dA dw dep d’w 2
KXGE[¢+$]+K\GA(E+ e ]+pAa) W =0 (20)

Note that with a=0, Eq. (19) and Eq. (20)
reduces to classical equation of motion of non-
uniform elastic Timoshenko beam and with N=0,
Eq. (19) and Eq. (20) reduces to equation of motion
of uniform elastic Timoshenko nanobeam and by
having both a=0 and N=0 Eqg. (19) and Eq. (20)
reduces to classical equation of motion of uniform
elastic Timoshenko beam. Non-dimensional
parameters are defined as

X:%,W :‘%,a:iﬁ,ﬁzz%ajt"
(21)
x w ea ,, pAo’l’
X:—’W :—’a:L’ﬂ :—’
L L L EI

Where a denotes the dimensionless nonlocal
parameter, A is the natural frequency parameter, X
and W are the dimensionless coordinate measured
from the left end of the beam along the length and
the dimensionless transverse displacement, n is
the dimensionless non-uniformity parameter and
£ is the slenderness ratio. Using these parameters,
non-dimensional form of the equations and
formulation procedures will be defined as

2192 2192 2
ofo-22 |rofm-at2g ) 55

w(1+Qa’ 2% )-W (nQa’2*) =0

(22)
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O+NO+W"+gW '+ QAW =0 (23)

By uncoupling Eq. (22) and Eq. (23), two fourth
order differential equations will appear:

W £ Clw" + C2w" + C3w + C4w =0 (24)

(0(4)+C1(0"'+C2(p"+C3(p'+C4(p=0 (25)
Where C,, C,, C;and C, are defined as

3a’ A +2£7
1= —0!2/12+§2
QoA+ 20 A+ QLA+ Pt + A
¢ = i+
An(2Qa’A* +28%a* +Q87 +1
R e L) 9
- A" +¢
22(§2a2ﬂ2+922—§2)
G = 2,2, 2
- A" +¢

In the present study, the ends of the beam are
considered to be simply supported (S), clamped
(C) or free (F). The boundary conditions associated
with both ends being simply supported (SS),
both ends being clamped (CC) and left end being
clamped while the right end being free (CF) may
be written in the same order as

Casel (SS): W(0)=0, M(0)=0 (1)=0, M(1)=0
Casell (CC): W(0)=0, ( )=0. (1 , p(1)=0
Caselll (CF): W(0)=0, ¢(0 ) o(1)=0, M(1)=0

(27)

Solution procedure

Solution of Eq. (24) and Eq. (25) subjected to
either boundary conditions given by Eq. (27) can
be written in a general form as

W(X)=A4,e""

(ﬂ(x) = AzlellX " +A24614X (29)

Where A, to A, are depended on the frequency
parameter and defined as:

b 1 N q
N S VR CI PO )
A= 5 Ty

1 , q
:_7_3_, -2
& 4a 2 erS (30)
b 1 q
=——+S5+= l P-2p+—
& 4a 2 P S

b 1 2 q
IR LIPS
SRR Ty

I X LX I X
+A4,e"" +4.” +4,e"

(28)

Jo X %
+4,,e*" +4,.e
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In which S, @, b, p and q are defined in appendix
A. The constants 4 and 4, are depended on each
other and could be related as

(42 +n4,+QA%)
A, =————F—"4, , i=1,2,3,4
i (/11.+77) i (31)
Applying boundary conditions in each case
leads to an equations for the determining the
natural frequencies.

Case I: Both ends of the beam are simply supported
(SS).

The non-dimensional boundary conditions for
simply-supported Timoshenko beams are given by

W(0)=0: A, +4,+A4,+4,=0 (32)
(33)
W()=0: e"4,+e"A4,+e" A4, +e"4,=0 (34)

R e e =

noti?

{J,} —M}"AH {44 —M}"AM =0

By substituting Eq. (31) into Eq.s (32) to (35),
the eigenvalue problem for simply supported
condition will be defined as

(;;+q/12+sw)(l’ nata
Grn) |2 @ wr)

e

1
/L+niﬂ+§u u na*i’
o [

(A2 +n4 +Q2%)

o] P Pk ) et e
1 | (36)
(/1\:*'74*“/12)"; na’i’ (Afwzlﬁsz)ﬂ)h s "
G (e e [ H
et o A"
B +Q;})B na'z ], (142+W~»+912)( wr ], 4
Gen) 7 (&-a') Gorn) | (@ -as)

And the frequency parameter is observed by
computing eigenvalues of coefficient matrix.

Case II: Both ends of the beam are clamped (CC).
The non-dimensional boundary conditions for
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clamped Timoshenko beams are given by

W(0)=0: A, +A4,+A4,+4,=0 (37)
9(0)=0: A, +4,+4,+4,=0 (38)
W(1)=0: e"4,+e"4,+e"4,+e*4,=0 (39)
p()=0: "4, +e" A, +e" 4, +e" 4, =0 (40)

By substituting Eq. (31) into Eq.’s (37) to (40),
the eigenvalue problem for clamped condition will
be defined as

1 1
(A +na+QA%) (4 +n4,+QA°)
(4 +n) (4 +n)
(& +nn+Q2%) | (z;+7712+m2)eh
(4 +n) (4 +m)
(41)
1 1
(A +nh+Q2%) (A +n4,+Q47) |(4,
(4 +7) (4 +7) As|
" ™ A, -
(& +n+Q2%) (4 +n4+027) |4
Gen) ()

The frequency parameter is observed by
computing eigenvalues of coefficient matrix.

Case llI: The left end of the beam is clamped while
the right end is free (CF).

The non-dimensional boundary conditions for
cantilever Timoshenko beams are given by

W(0)=0: A4, +4,+4,+4,=0

(42)

P(0)=0: A +4,+A4,+4,=0

(43)

- (Z.|2+7]/'L|+Q/12)( 7[ na’i’ J{ Ea’i? Jem .
Q(l)fo' [ (11+’7) LZ'I (éz_azﬂz) (sz_azlz) A“

(Frmror) [ gwr [ ewr .., .
(&Z+771“+Q}":)( 7{ naziz J+[ (:“a)’ ]‘ +
{ e S (G M (Ea)
(% +m+02)( { L ]{ fair Jg

{ (A +n) L& (f‘fazﬂz) (5 7(12/12) 4,=0
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w()=o: [&MJA[%MJA

(Z+n) (% +n)
(#+na,+02) Fdos (A i r02?) 4 —o
[C I N N R !

(45)

The frequency parameter is observed by

computing eigenvalues of coefficient matrix by

substituting Eq. (31) into Eq.s (42) to (45) which
will be defined as

1 1

(4+n) (% +m)
CN, CN,
jﬂi(zfﬂ;;ﬁ +2)) [, (Renke0l))
(4+n) (& +n)
1 1 (46)
(]1*"7) (/14+77) Ay, -0
CN, CN, A3 -
; (4 +1) + (A4 +7m)

Where and are defined in Appendix. By knowing
the natural frequencies and the coefficients , the
unsteady transverse vibration of the beam can
then be written as

W=(Ale7‘X + 4, + A" +e“X)[dlcos(a)t)+d2sin(a)t)]
(47)

RESULTS AND DISCUSSION

For different vibrating mode numbers, influence
of small length scale and non-uniformity cross-
section on the vibration of single layered graphene
nanoribbons (SLGNRs) is illustrated. Wang and
Wang [42] have shown that the value of ¢ a should
be smaller than 2.0 nm for carbon nanotubes
also the exact value of nonlocal parameter is not
exactly known. The external characteristic length
varies so the nonlocal or small scale coefficient
parameter a=e, a/l is taken from 0 to 0.7 and
the non-uniformity parameter |y is also assumed
to change from 0 to 1. The analysis presented,
describes the nonlocal free vibration of a
Timoshenko nanobeam with exponentially varying
characteristic width and provides the analytical
solutions. The natural frequency for the SS, CC ad
CF boundary conditions are obtained respectively.
According to the symmetric boundary conditions
in clamped and simply supported beams, sign of
the non-uniformity parameter has no effects on
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the results while in cantilever nanobeams the sign
of the non-uniformity parameter matters.

In order to verify the validation of present
solution procedure, the non-uniformity parameter
n is assumed to be zero to compare the present
solution with nonlocal Timoshenko beam [42]. In
Table 1 the non-dimensional natural frequency
parameter of a simply supported beam with
various nonlocal parameters are presented while
the non-uniformity parameter is assumed to be
zero and the results are compared with those
obtained by Wang et al. [43]. Same works has

been done for different boundary conditions
which are presented and compared in Table 2 and
Table 3 for clamped and cantilever nanobeams
with various nonlocal parameters which show a
great agreement between the results.

Influence of the nonlocal parameter on the first
5 modes of vibration is clarified for different kind of
boundary conditions which is shown in Fig. 2. The
non-uniformity parameter is assumed to be n=1
and the beams slenderness is L/D =10 so the shear
deformation and rotary inertia be mentioned due
to having a short beam.

Table 1: Natural frequency parameters for a Timoshenko simply supported beam with various scaling effect parameters.

Mode Natural frequencies (S-S)
n Number a=0.1 Wang et al. a=03 Wangetal. a=0.5 Wangetal. a =0.7 Wangetal.
0 1 3.02432 3.0243 2.65378 2.6538 2.28668 2.2867 2.01055 2.0106
0 2 5.53036 5.5304 4.20576 4.2058 3.40365 3.4037 2.91589 29159
0 3 7.46987 7.4699 5.24441 5.2444 4.16447 4.1644 3.54531 3.5453
0 4 8.98744 8.9874 6.02276 6.0228 4.74356 4.7436 4.02834 4.0283
0 5 10.2061 10.206 6.63336 6.6333 5.20088 5.2009 441074 4.4107
Table 2: Natural frequency parameters for a Timoshenko clamped beam with various scaling effect parameters.
Mode Natural frequencies (C-C)
In Number a=0.1 Wang et al. a =03 Wangetal. a =0.5 Wangetal. a =0.7 Wangetal
0 1 434712 4.3471 3.78946 3.7895 3.24201 3.2420 2.83829 2.8383
0 2 6.49518 6.4952 4.94276 4.9428 3.99398 3.9940 3.41916 3.4192
0 3 8.19691 8.1969 5.84601 5.8460 4.67685 4.6769 3.99605 3.9961
0 4 9.54474 9.5447 6.47620 6.4762 5.11311 5.1131 4.34549 4.3455
0 5 10.6488 10.649 7.01703 7.0170 5.52828 5.5283 4.69860 4.6986
Table 3: Natural frequency parameters for a Timoshenko cantilever beam with various scaling effect parameters.
Mode Natural frequencies (C-F)
In Number a=01 Wang et al. a =203 Wangetal. a=0.5 Wangetal. a =0.7 Wangetal
0 1 1.86496 1.8650 1.89986 1.8999 2.00238 2.0024 - -
0 2 4.35057 4.3506 3.65941 3.6594 2.89033 2.8903 - -
0 3 6.60910 6.6091 5.07623 5.0762 - - - -
0 4 8.31508 8.3151 5.78749 5.7875 - - - -
0 5 9.67045 9.6705 6.58342 6.5834 - - - -
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Fig. 2: Variation of frequency parameter of a beam with exponentially
varying width (n=1) and L/D = 10 for different nonlocal parameter
(a) simply supported (b) Clamped (c) Cantilever.

In Fig. 2a, it can be seen that by increasing the
small scale effects in the non-uniform Timoshenko
nanobeam with simply supported end, the natural
frequency parameter decreases permanently.
The same behavior is also seen for the clamped
ended non-uniform Timoshenko nanobeams in
Fig. 2b. For the cantilever condition, the frequency
parameter of the first mode of vibration starts
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Fig. 3: Rotary inertia and transverse shear deformation effects
on frequency parameter for clamped non-uniform beam with
different nonlocal parameters and n=1 (a) simply supported (b)
Clamped (c) Cantilever.

increasing by increasing the small scale terms but
for the higher modes of vibration, the frequency
parameter decreases constantly by increasing the
small scale parameter which can be seen in Fig. 2c.

To illustrate the influence of slenderness
parameter on the frequency parameter of non-
uniform clamped Timoshenko nanobeams for
different numbers of nonlocal parameter, the
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slenderness parameter assumed to be L/D =10, 20
and 30 while the nonlocal parameter is changed
from 0.1 to 0.7 and the results for frequency
parameter is presented in Fig. 3a for simply-

S-S first mode, n =1
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Frequency parameter

Fig. 4: Rotary inertia and transverse shear deformation effects
on frequency parameter for simply supported non-uniform
beam with different nonlocal parameters and n=1 (a) First

Mode (b) Third Mode (c) Fifth mode.
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supported, Fig. 3b for clamped and Fig. 3c for
cantilever nanobeams. As it’s shown, for all the
boundary conditions presented in this paper, by
increasing the slenderness ratio parameter which
leads to decreasing the effects of rotary inertia
and shear deformation, the frequency parameter
increases independent from the nonlocal
parameters amount. It is also shown that the
frequency parameter shows more sensitivity to
the changes in slender ratio parameter in the small
number of it and it merges to a specific number for
higher slender ratio parameters. It should be noted
that by having higher slender ratio parameter,
effects of rotary inertia disappears and the results
are the same as Euler-Bernoulli nanobeams.

In the same way, in Fig. 4 the influence
of slenderness parameter on the frequency
parameter of non-uniform simply supported
Timoshenko nanobeams for different numbers
of nonlocal parameter is studied while the
slenderness parameter assumed to be L/D =10,

Frequency ratio

Frequency ratio

Fig. 5: Small scale effect on the frequency with L/D = 10 and
n=1 (a) simply supported (b) Clamped.
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Fig 6. Non-uniformity and nonlocal effect on the frequency for first mode with L/D = 10 (a) simply supported (b) Clamped.

20 and 30 and the nonlocal parameter is varied
from 0.1 to 0.7 which the results show the same
behavior with the clamped ended Timoshenko
nanobeam. Results are presented for first mode of
vibration in Fig. 4a and for third and fifth mode of
vibration in Fig. 4b and Fig. 4c.

Also sensitivity of frequency parameter to
the changes in nonlocal parameter for different
vibration modes are presented in Fig. 5a for simply
supported and Fig. 5b for clamped non-uniform
Timoshenko nanobeams while the non-uniformity
parameter is assumed to be n=1. It is shown that
increasing the non-uniform parameter has more
effect on frequency ratio of lower vibration modes.
Variation of frequency parameter by increasing
the non-uniformity parameter from 0 to 1 and
changing the nonlocal parameter while the value
of L/D is set to be 10 is presented for first mode
of vibration for simply supported nanobeams
in Fig. 6a and clamped nanobeams in Fig. 6b.
The sensitivity to changes in nonlocal parameter
is more for the non-uniformed Timoshenko
nanobeams with higher non-uniformity scale.

CONCLUSION

In this study, general analytical solution
based on the Eringen’s nonlocal elasticity theory
is formulated for non-uniform timoshenko
nanobeams to describe the free vibration of
single-layered graphene nanoribbons (GNRs)
with variable cross-section in different boundary
conditions. Results are achieved and parametric
study is done in different manners by varying
the nonlocal parameter in order to show the
small scale effects, varying the non-uniformity

Int. J. Nano Dimens., 8 (1): 70-81, Winter 2017

parameter to obtain the effects of having a non-
uniform cross-section and changing value of L/D
to understanding the effects of rotary inertia and
shear deformation on frequency parameter in
different modes. It is shown that:

When the nonlocal effect was taken into account
that without consideration non-uniformity, in
this manner, the frequency ratio of the beam
decreased by increasing the nonlocal parameter
except for the first frequency mode of cantilever
nanobeam.

For the time when non-uniformity effects were
also taken into account without consideration
nonlocal effect, the frequency ratio of the
beam changes differently with increase in non-
uniformity parameter depending on the boundary
conditions.

By having both nonlocal and non-uniformity
effects in the system, natural frequency changes
depending on the boundary condition which is
presented in the study.

Increasing the value of L/D in non-uniform
Timoshenko nanobeam will merge the answers
to those achieved by solving non-uniform Euler
nanobeam problem by eliminating the effects of
rotary inertia and shear deformation.

Rotary inertia and shear deformation has
the less effect on first mode of vibration in non-
uniform nanobeam. These effects are much more
for higher modes of vibration.

In non-uniform nanobeams, increasing the nonlocal
parameter has more effect on first mode of vibration
and the sensitivity decreases in higher modes.

Increasing non-uniformity in cantilever nanobeams
will lead to having more frequency modes.
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APPENDIX
Appendix A
The expanded form of p, g, Sand Q are
_ 8ac —3b*
P= 84’
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B 8a’
5L _zp;[@ﬁj (A1)
2\ 3 3a 0
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Wherea, b, ¢, d, e, Ajand A are defined as

A, =c* =3bd +12ae

A, =2¢* —9bcd +27b*e+27ad’ - T2ace
a=1

b=2n

c=n*+a’A’
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(A.2)

Appendix B
Parameters CNI,CN2,CN3 and CN3 are
defined as
(A +n4+Q1%) nat it Ea’x
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