[1] Ma Y., Kong X., Abbate V., Hider R. C., (2015), Synthesis and characterization of novel iron specific bicyclic fluorescent probes. Sens. Actuat. B. 213: 12-19.
[2] Upanan S., Pangjit K., Uthaipibull C., Fucharoen S., McKie A. T., Srichairatanakool S., (2015), Combined treatment of 3–hydroxypyridine–4–one derivatives and green tea extract to induce hepcidin expression in iron–overloaded β–thalassemic mice. Asian Pacific J. Trop. Biomed. 5: 1010–1017.
[3] Andayi W. A., Egan T. J., Chibale K., (2014), Kojic acid derived hydroxypyridinone–chloroquine hybrids: Synthesis, crystal structure, antiplasmodial activity and β–haematin inhibition. Bioorg. Med. Chem. Lett. 24: 3263–3267.
[4] Medina–Franco J. L., Martínez–Mayorga K., Juárez–Gordiano C., Castillo R., (2007), Pyridin–2(1H)–ones: A promising class of HIV–1 non–nucleoside reverse transcriptase inhibitors. Chem. Med. Chem. 2: 1141–1147.
[5] De Clercq E., (2005), New approaches toward anti–HIV chemotherapy. J. Med. Chem. 48: 1297–1313.
[6] Reyes H., Aguirre G., Cháveza D., (2013), 4–Hydroxy–6–methylpyridin–2(1H)–one. Acta Cryst. E. 69: 1534-1538.
[7] Mohammadpour M., Zborowski K. K., Heidarpoor S., Żuchowski G., Proniewicz L. M., (2016), Modeling of stability and properties of anionic and cationic tautomers of the 3-hydroxypyridin-4-one system. Comput. Theor. Chem. 1078: 96-103.
[8] Yaraghi A., Ozkendir O. M., Mirzaei M., (2015), DFT studies of 5–fluorouracil tautomers on a silicon graphene nanosheet. Superlatt. Microstruct. 85: 784–788.
[9] Graff M., Dobrowolski J. C., (2013), On tautomerism of diazinones. Comput. Theor. Chem. 1026: 55–64.
[10] Siddiqui S. A., Bouarissa N., Rasheed T., Al–Assiri M. S., Al–Hajry A., (2014), Detection of electronically equivalent tautomers of adenine base: DFT study. Mater. Res. Bull. 51: 309–314.
[11] Garmaroudi F. S., Vahdati R. A. R., (2010), Functionalized CNTs for delivery of therapeutics. Int. J. Nano Dimens. 1: 89–102.
[12] Mirzaei M., (2013), Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int. J. Nano Dimens. 3: 175–179.
[13] Mundra R. V., Wu X., Sauer J., Dordick J. S., Kane R. S., (2014), Nanotubes in biological applications. Curr. Opin. Biotechnol. 28: 25–32.
[14] Bodaghi A., Mirzaei M., Seif A., Giahi M., (2008), A computational NMR study on zigzag aluminum nitride nanotubes. Physica E. 41: 209–212.
[15] Rahimnejad S., Mirzaei M., (2011), Computational studies of planar, tubular and conical forms of silicon nanostructures. Int. J. Nano Dimens. 1: 257–260.
[16] Ahmadi R., Boroushaki T., Ezzati M., (2015), The usage comparison of occupancy parameters, gap band energy, ΔNmax at Xylometazoline medicine ratio its medical conveyer nano. Int. J. Nano Dimens. 6: 19-22.
[17] Ema M., Gamo M., Honda K., (2016), A review of toxicity studies of single–walled carbon nanotubes in laboratory animals. Regul. Toxicol. Pharmacol. 74: 42–63.
[18] Marmolejo–Tejada J. M., Velasco–Medina J., (2016), Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48: 18–38.
[19] Linko V., Ora A., Kostiainen M. A., (2015), DNA nanostructures as smart drug–delivery vehicles and molecular devices. Trends Biotechnol. 33: 586–594.
[20] Rezvani M., Ganji M. D., Faghihnasiri M., (2013), Encapsulation of lamivudine into single walled carbon nanotubes: A vdW–DF study. Physica E. 52: 27–33.
[21] Mirzaei M., (2013), Uracil–functionalized ultra–small (n, 0) boron nitride nanotubes (n = 3–6): Computational studies. Superlatt. Microstruct. 57: 44–50.
[22] Ahmadian N., Ganji M. D., Laffafchy M., (2012), Theoretical investigation of nerve agent DMMP adsorption onto Stone–Wales defected single–walled carbon nanotube. Mater. Chem. Phys. 135: 569–574.
[23] Zhao J., Ma J., Nan X., Tang B., (2016), Application of non–covalent functionalized carbon nanotubes for the counter electrode of dye–sensitized solar cells. Org. Electron. 30: 52–59.
[24] Mirzaei M., (2013), Formation of a peptide assisted bi–graphene and its properties: DFT studies. Superlatt. Microstruct. 54: 47–53.
[25] Das T. P., Han E. L., (1958), Nuclear Quadrupole Resonance Spectroscopy. Academic Press, New York.
[26] Mirzaei M., Gulseren O., (2015), DFT studies of CNT–functionalized uracil–acetate hybrids. Physica E. 73: 105–109.
[27] Mirzaei M., Samadi Z., Hadipour N. L., (2010), Hydrogen bonds of peptide group in four acetamide derivatives: DFT study of oxygen and nitrogen NQR and NMR parameters. J. Iran. Chem. Soc. 7: 164–170.
[28] Seif A., Boshra A., Mirzaei M., Aghaie M., (2008), Carbon–substituting in (4, 4) boron nitride nanotube: Density functional study of boron–11 and nitrogen–14 electric field gradient tensors. J. Theor. Comput. Chem. 7: 447–455.
[29] Mirzaei M., Hadipour N. L., Abolhassani M. R., (2007), Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes: A DFT study. Z. Naturforsch. A. 62: 56–60.
[30] Mirzaei M., Elmi F., Hadipour N. L., (2006), A systematic investigation of hydrogen-bonding effects on the 17O, 14N, and 2H nuclear quadrupole resonance parameters of anhydrous and monohydrated cytosine crystalline structures: A density functional theory study. J. Phys. Chem. B. 110: 10991–10996.
[31] Pyykkö P., (2001), Spectroscopic nuclear quadrupole moments. Mol. Phys. 99: 1617–1629.
[32] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., (2009), Gaussian 09, A.01. Gaussian Inc, Pittsburgh, PA.
[33] The Gaussian IOps Manual, www.gaussian.com/g_tech/g_iops/iops2.pdf.
[34] Grimme S., (2011), Density functional theory with London dispersion corrections. WIREs Comput. Molec. Sci. 1: 211–228.