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Abstract 
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with 
remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, 
especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial 
importance. Thus, this study employs density functional theory (DFT) to obtain the mechanical properties 
of graphene-like graphitic carbon-nitride (g-C3N4) nanosheets such as Young’s, bulk and shear moduli and 
Poisson’s ratio. Based on the results, Young’s, bulk and shear moduli of this nanosheet are lower than those 
of graphene and hexagonal boron-nitride sheet. Besides, it is observed that the values of the aforementioned 
properties for graphene-like g-C3N4 nanosheets are higher than those of porous graphene and SiC. It is 
further observed that the Poisson’s ratio of graphene-like g-C3N4 nanosheets is lower than those of any 
similar two-dimensional graphitic structures.
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INTRODUCTION
The fascinating properties of two-dimensional 

nanosheets with single atomic thickness enable 
researchers to design and fabricate various novel 
nanodevices [1-16]. Since the exfoliation of 
graphene, many efforts have been put into the 
characterizing different organic and inorganic two-
dimensional nanosheets such as other graphene 
allotropes (graphane, graphyne, etc), porous 
graphene, hexagonal boron-nitride, Molybdenum 
disulfide and so on due to their intriguing 
properties and considerable potential applications 
in nanoelectromechanical systems (NEMS). Among 
the various fabricated nanomaterials, carbon 
nanostructures such as graphene and its allotropes 
and boron carbon nitride nanostructures (BCN) 
have been the focus of interest [17-24].  Predicting 
the properties of different phases of carbon 
nitride is demonstrated that β-C3N4 possesses 
noticeably high bulk modulus which is comparable 
to that of diamond. This property has motivated 
the researchers to explore the properties of 

phases of dense C3N4. Experimentally, different 
techniques have been employed to synthesize 
the theoretically predicted phases of C3N4 [25-27]. 
As the physiochemical properties of any phases 
and allotropes of nanomaterials are different 
from those of their two-dimensional structures 
due to quantum confinement effects in the sub-
nanometer scales [28-30], studying their properties 
is of considerable importance in material science 
and engineering. Considering C3N4, it is found that 
its graphitic allotropes (g-C3N4) are the most stable 
allotropes with hexagonal structure which have 
strong C-N covalent bonds instead of C-C ones with 
small pores on the sheets. G-C3N4 can be fabricated 
through different methods such as solvothermal 
synthesis, mechanochemical reactions, thermal 
decomposition and so on [31-36]. Based on the 
published literature, several investigations on this 
metal-free semiconductor graphene-like polymer 
with medium band gap compared to the zero band 
gap of graphene, together with its great thermal 
and chemical stability and remarkable optical and 
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photoelectrochemical properties  [37, 38] make 
it the most suitable material with considerably 
promising applications such as catalysts [39-41], 
lithium ion storages [42], optoelectronics [43-44], 
bioimaging and biomedical applications [45]. 

Determination the mechanical properties of 
nanostructures are of high importance. To the 
best of the author’s knowledge, the mechanical 
properties of g-C3N4 nanosheets have not been 
investigated so far. Motivated by this issue, this 
study is performed to investigate the mechanical 
properties such as Young’s, bulk and shear moduli 
and Poisson’s ratio of g-C3N4 nanosheets employing 
density functional calculations (DFT).

EXPERIMENTAL
To perform DFT calculations, the Quantum-

Espresso code [46] with the exchange correlation 
of Perdew-Burke-Ernzerhof (PBE) throgh GGA 
frameworks [47-48] is employed. Moreover, 
Brillouin zone integration is taken with a 
Monkhorst-Pack [49] k-point mesh of 12 × 12× 
1 and the value of cut-off energy for plane wave 
expansion is chosen to be 80 Ry. As the results are 

not sensitive to unit cell dimension, the smallest 
hexagonal unit cell is selected and appropriate 
loading conditions are applied and the strain 
energies are stored. Finally, using the second 
derivative of strain energy with respect to the 
applied strain [50-51], the elastic constants such 
as Young’s, bulk and shear moduli are computed. 
Poisson’s ratio is also calculated. Note that the 
equations corresponding to the calculation of the 
elastic constants are described in the following 
sections.     

RESULTS AND DISCUSSION
In order to achieve a better understanding 

of graphene-like g-C3N4 nanosheets, Fig. 1 is 
presented. This figure demonstrates the hexagonal 
unit cell and the values of lattice constants, i.e.  
and  which indicate the first and second lattice 
constants after structural optimization process, 
respectively. As shown, the unit cell has three 
carbon atoms and four nitrogen atoms which are 
indicated by gray and blue colors, respectively. 
The optimized structure is imposed by appropriate 
loadings.

Fig. 1: Unit cell of graphene-like g-C3N4.
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Fig. 1: Unit cell of graphene-like g-C3N4 
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Young’s modulus and Poisson’s ratio
In order to compute Young’s modulus, the 

uniaxial strains in the harmonic elastic range, i.e. 
-2% to 2%, are applied to the unit cell as illustrated 
in Fig. 2 and the strain energies related to the 
applied strains are computed. 

By fitting a polynomial of second degree to 
data sets, Young’s modulus is calculated through 
performing the second derivative of strain energy 
with respect to the applied strain according to Eq. 
(1).
𝑌𝑌𝑠𝑠  𝐴𝐴   𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝜀𝜀   

 

 

𝐵𝐵 𝐴𝐴  𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝐴𝐴   

 

𝐵𝐵 𝐴𝐴  𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝛾𝛾𝑥𝑥𝑦𝑦   

                                             (1)

in which Ao, Es and ε indicate the equilibrium 
optimized area of hexagonal unit cell, strain energy 
and axial strain, respectively. The calculations 
show that Young’s modulus of graphene-like 
g-C3N4 nanosheets is around 238.5 Pa.m which is 
almost 29% and 11% lower than those of graphene 
[13] and hexagonal boron-nitride [13] nanosheets, 

respectively. Additionally, it is found that the 
stiffness of graphene-like g-C3N4 nanosheets 
is around 1.9 and 1.4 times higher than those 
of porous graphene (PG) [16] and SiC [13-15] 
nanosheets. To make a qualitative comparison, 
Fig. 3 is illustrated.

Considering the Poisson’s ratio, which can be 
computed by the ratio of the transverse strain 
to the axial one, i.e. Δa/a and Δb/b  for axial 
and transverse strains, respectively, the value 
of Poisson’s ratio is obtained around 0.12 which 
is approximately 25%, 43% and 58% lower than 
those of graphene [13], hexagonal boron-nitride 
[13] and SiC [13, 15], respectively. Moreover, Fig. 
4 is presented to make a graphical comparison 
between different values of Poisson’s ratio. 
 Bulk modulus

To obtain the bulk modulus, biaxial strain 
is imposed in the harmonic elastic range as 
presented in Fig. 5. The bulk modulus can be also 

Fig. 2: Schematic representation of imposing uniaxial strain.

Fig. 3: Comparing Young’s modulus of graphene-like g-C3N4 
with those of other graphitic two-dimensional nanosheets.
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Fig. 2: Schematic representation of imposing uniaxial strain 
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Fig. 3: Comparing Young’s modulus of graphene-like g-C3N4 with those of other graphitic two-dimensional 

nanosheets 

 

 

 

 

 

 

Fig. 4: Comparing Poisson’s ratio of graphene-like g-C3N4 
with those of other graphitic two-dimensional nanosheets.
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Fig. 4: Comparing Poisson’s ratio of graphene-like g-C3N4 with those of other graphitic two-dimensional 

nanosheets 
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obtained by fitting a polynomial of second degree 
to data sets and performing the second derivative 
of strain energy with respect to the area [12] as 
follows

𝑌𝑌𝑠𝑠  𝐴𝐴   𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝜀𝜀   

 

 

𝐵𝐵 𝐴𝐴  𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝐴𝐴   

 

𝐵𝐵 𝐴𝐴  𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝛾𝛾𝑥𝑥𝑦𝑦   

                                                      (2)

where A shows the area of unitcell during 
deformation. It is observed that the bulk modulus 
of graphene-like g-C3N4 nanosheets is around 122.6 
Pa.m which is 39% and 23.3% lower than those 
of graphene [12] and hexagonal boron-nitride 
nanosheets [12], respectively. Such a discrepancy 
is shown in Fig. 5.

Shear modulus
Shear modulus of two-dimensional nanosheets 

can be obtained by imposing shear strain according 
to Fig. 6. Furthermore, a similar process related to 
Young’s modulus is utilized to compute the shear 
modulus [5] by Eq. (3).

𝑌𝑌𝑠𝑠  𝐴𝐴   𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝜀𝜀   

 

 

𝐵𝐵 𝐴𝐴  𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝐴𝐴   

 

𝐵𝐵 𝐴𝐴  𝜕𝜕 𝐸𝐸𝑆𝑆 𝜕𝜕𝛾𝛾𝑥𝑥𝑦𝑦   
                                                   (3)

in which γxy presents the shear strain. Based 
on the results, the shear modulus of graphene-
like g-C34 nanosheets is calculated around 121.93 
Pa.m. According to the published literature, 
different values for the shear modulus have been 
reported varying from ~121 [11] to ~138 Pa.m 
[10]. Comparing the results shows that the shear 
modulus of graphene-like g-C3N4 nanosheets is 
close to that of graphene in comparison with 
other elastic constants. The highest percentage of 
discrepancy between the existing data is around 
11.5%. It is also found that the shear modulus 
of graphene-like g-C3N4 nanosheets is 26% lower 
than that of hexagonal boron-nitride [14].  Finally, 
Figs. 7 and 8 is illustrated to make a comparison 
between the values of shear modulus reported in 
the literature.
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Fig. 5: Schematic representation of imposing biaxial strain 

  

Fig. 5: Schematic representation of imposing biaxial strain.

Fig. 6: Comparing the bulk modulus of graphene-like g-C3N4with those of other graphitic two-dimensional nanosheets.
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Fig. 7: Schematic representation of imposing shear strain.

Fig. 8: Comparing the shear modulus of graphene-like g-C3N4 with those of other graphitic two-dimensional nanosheets.
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Fig. 7: Schematic representation of imposing shear strain 

  

8 

 

 

 

Fig. 8: Comparing the shear modulus of graphene-like g-C3N4 with those of other graphitic two-dimensional 

nanosheets 
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CONCLUSION 
Based on the DFT calculations, Young’s, bulk and 

shear moduli and Poisson’s ratio of graphene-like 
g-C3N4 nanosheet, a metal-free two-dimensional 
polymer graphitic carbon-nitride, were 
investigated. The obtained results demonstrated 
that this structure possesses lower Young’s, bulk 
and shear moduli compared to graphene and 
hexagonal boron-nitride. On the contrary, it was 
found that the values of the aforementioned 
constants for graphene-like g-C3N4 nanosheets 
are higher than those of porous graphene and 
SiC nanosheets. Considering the Poisson’s ratio, 
it was further observed that graphene-like 
g-C3N4 nanosheets have smaller Poisson’s ratios 
compared to those of other two-dimensional 
graphitic nanosheets.  
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