[1] Nic Daeid N., Yu H. A., Beardah M. S., (2017), Investigating TNT loss between sample collection and analysis. Science & Justice. 57: 95-100.
[2] Uesawa S., Nakagawa M., Umetsu A., (2016), Explosive eruptive activity and temporal magmatic changes at Yotei Volcano during the last 50,000 years, southwest Hokkaido, Japan. J. Volcanol. Geotherm. Res. 325: 27-44.
[3] Daryaei R., Eslami A., (2017), Settlement evaluation of explosive compaction in saturated sands. Soil Dynam. Earthq. Eng. 97: 241-250.
[4] DeGreeff L. E., Malito M., Katilie C. J., Brandon A., Conroy M. W., Peranich K., Ananth R., Rose-Pehrsson S. L., (2017), Passive delivery of mixed explosives vapor from separated components. Forensic Chem. 4: 19-31.
[5] Gallastegui G., Lara R. M., Elías A., Rojo N., Barona A., (2017), Black slag fixed bed for toluene, ethylbenzene and p-xylene (TEX) biodegradation and meiofauna development. Int. Biodeterioration & Biodegradation. 119: 349-360.
[6] Ghosh P., Roy P., Ghosh A., Jana S., Murmu N. C., Mukhopadhyay S. K., Banerjee P., (2017), Explosive and pollutant TNP detection by structurally flexible SOFs: DFT-D3, TD-DFT study and in vitro recognition. J. Luminesc. 185: 272-278.
[7] Gross M. L., Meredith K. V., Beckstead M. W., (2015), Fast cook-off modeling of HMX. Combus. Flame. 162: 3307-3315.
[8] Konstantynovski K., Njio G., Holl G., (2017), Detection of explosives–Studies on thermal decomposition patterns of energetic materials by means of chemical and physical sensors. Sensors and Actuators B: Chemical. 246: 278-285.
[9] Dixit V., Yadav R. A., (2015), DFT-B3LYP computations of electro and thermo molecular characteristics and mode of action of fungicides (chlorophenols). Int. J. Pharmac. 491: 277-284.
[10] Talebian E. , Talebian M., (2014), A comparative DFT study on the differences between normal modes of polyethylene and polyethylene glycol via B3LYP Hamiltonian and the Hartree–Fock method in multiple bases. Optik – Int. J. Light and Electron Optics. 125: 228-231.
[11] Yoshimoto M., Matsunaga T., Tanaka M., Kurosawa S., (2016), Determination of thermodynamic parameters for enolization reaction of malonic and metylmalonic acids by using quartz crystal microbalance. Analyt. Chem. Res. 8: 9-15.
[12] Baei M. T., Peyghan A. A., Moghimi M., Hashemian S., (2012), First-principles calculations of structural stability, electronic and electrical responses of GeC nanotube under electric field effect for use in nanoelectronic devices. Superlat. Microstruc. 52: 1119-1130.
[13] Dai X., Meng Y., Xin M., Wang F., Fei D., Jin M., Wang Z., Zhang R., (2012), Energetics and electronic properties of a neutral diuranium molecule encapsulated in C90 fullerene. Procedia Chem. 7: 528-533.
[14] Beheshtian J., Peyghan A. A., Bagheri Z., (2012), Functionalization of [60] fullerene with butadienes: A DFT study. Appl. Surf. Sci. 258: 8980-8984.
[15] Bahrami Panah N., Vaziri R., (2015), Structure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods. Int. J. Nano Dimens. 6: 157-165.
[16] Jahanbin Sardroodi J., Afshari S., Rastkar Ebrahimzadeh A. R., Abbasi M., (2015), Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths. Int. J. Nano Dimens. 6: 105-109.