Synthesis and characterization of superparamagnetic Iron Oxide nanoparticles (SPIONs) stabilized by Glucose, Fructose and Sucrose

Document Type : Reasearch Paper

Authors

1 Department of Physics, Sree Krishna College of Engineering, Unai, Anaicut, Tamilnadu, India

2 PG and Research Department of Physics, Islamiah College, Vaniyambadi, Tamilnadu, India

3 Department of Physics, University College of Engineering-Arni, Tamilnadu, India

4 Department of Physics, Avinashilingam Institute for Home Science and Higher Education, Coimbatore, Tamilnadu, India

Abstract

The aim of this study is to obtain polysaccharide (Glucose, Fructose and Sucrose) stabilized superparamagnetic iron oxide nanoparticles (SPIONs) by Co-Precipitation method. As prepared iron oxide nanoparticles have been characterized by X-ray Diffraction (XRD), Fourier Transform infrared (FTIR) spectroscopy, UV–Vis NIR spectroscopy, High Resolution Transmission Electron Microscope (HRTEM) and Vibrating Sample Magnetometer (VSM). The average crystallite sizes as determined from XRD for Glucose–Fe3O4 (GF), Fructose–Fe3O4 (FF) and Sucrose–Fe3O4 (SF) are 3.3, 4.82 and 5.23 nm, respectively. Powder XRD study also demonstrates that the synthesized nanoparticles are indexed for spinel cubic lattice. FTIR spectrum shows a good vibrational interaction between Fe3O4 and polysaccharides functional groups and it controls the growth of Fe3O4 nanoparticles. SPIONs exhibit superparamagnetic properties with a coercivity ranging from 0.55 to 9.13 Oe and a saturation magnetization in the range 38-42 emu/g.

Keywords

Main Subjects


[1] Duncan R., Spreafico F., (1994), Polymer conjugates. Pharmacokinetic considerations for design and development. Clin. Pharmacoki. 27: 290-306.
[2] Boyd B. J., (2008), Past and future evolution in colloidal drug delivery systems. Exp. Opin. Drug Deliv. 5: 69-85.
[3] Duncan R., (2007), Designing polymer conjugates as lysosomotropic nanomedicines. Biochem. Soc. Trans. 35: 56-60.
[4] Hou C. H., Hou S. M., Hsueh Y. S., Lin J., Wu H. C., Lin F. H., (2009), The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. J. Biomater. 30: 3956-3960.
[5] Predoi D., Kuncser V., Zaharescu M., Keune W., Sahoo B., Valeanu M., Crisan M., Raileanu M., Jitianu A., Filoti G., (2004), Structural and magnetic properties of iron species/SiO2 nanocomposites obtained by sol–gel methods. Phy. Stat. Solid. 1: 3507-3510.
[6] Kang Y. S., Risbud S., Rabolt J. F., Stroeve P., (1996), Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8: 2209-2211.
[7] Fried T., Shemer G., Markovich G., (2001), Ordered two-dimensional arrays of ferrite nanoparticles. Adv. Mater. 13: 1158-1161.
[8] Jitianu A., Raileanu M., Crisan M., Predoi D., Jitianu M., Stanciu L., Zaharescu M., (2006), Fe3O4-SiO2 nanocomposites obtained via alkoxide and colloidal route. J. Sol–Gel Sci. Tech. 40: 317-323.
[9] Predoi D., Crisan O., Jitianu A., Valsangiacom M. C., Raileanu M., Zaharescu M., (2007), Iron oxide in a silica matrix prepared by the sol–gel method. Thin Sol. Film. 515: 6319-6323.
[10] Guo S., Li D., Zhang L., Li J., Wang E., (2009) ,Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. J. Biomat. 30: 1881-1889.
[11] Zhang L. Y., Zhu X. J., Sun H. W., Chi G. R., Xu J. X., Sun Y. L., (2010), Control synthesis of magnetic Fe3O4–chitosan nanoparticles under UV irradiation in aqueous system. Current Appl. Phys. 10: 828-833.
[12] Ding J., Tao K., Li J., Song S., Sun K., (2010), Cell-specific cytotoxicity of dextran- stabilized magnetite nanoparticles. Colloids and Surf. B: Biointerfaces. 79: 184-190.
[13] Batalha I. L., Hussain A., Roque A. C. A., (2010), Gum arabic coated magnetic nanoparticles with affinity ligands specific for antibodies. J. Mol. Recog. 23: 462-71.
[14] Pourjavadi A., Hosseini S. H., Seidi F., Soleyman R.., (2013), Magnetic removal of crystal violet from aqueous solutions using polysaccharide based magnetic nanocomposite hydrogels. Poly. Int. 62: 1038-1044.
[15] Xiao Q., Tan X., Ji L., Xue J., (2007), Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route. Synth. Metals. 157: 784-791.
[16] Kim G. C., Li Y. Y., Chu Y. F., Cheng S. X., Zhuo R. X., Zhang X. Z. (2008), Nano- sized temperature-responsive Fe3O4-UA-g-P(UA-co-NIPAAm) magnetomicelles for controlled drug release. Europ. Polym. J. 44: 2761-2767.
[17] Wang Y. M., Cao X., Liu G. H., Hong R. Y., Chen Y. M., Chen X. F., Li H. Z., Xu B., Wei D. G., (2011), Synthesis of Fe3O4 magnetic fluid used for magnetic resonance  imaging and hyperthermia. J. Magnetis. Magnetic. Mater. 323: 2953-2959.
[18] Silva V. A. J., Andrade P. L., Silva M. P. C., A. Bustamante D., Luis De Los Santos V., Albino Aguiar J., (2013), Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magnetis. Magnetic. Mater. 343: 138-143.
[19] Manish S., Jay S., Madhu Y., Dinesh Kumar G., Mishra R. K., Shipra T., Animesh K. O., (2012), Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe3O4/alginate) nanocomposites. Carbohyd. Polym. 89: 821-829.
[20]Cullity B. D, Stock S. R., (2001). Elements of X-ray Diffraction, New Jersey.
[21] Chang P. R., Yu J. G., Ma X. F., (2009), Fabrication and characterization of Sb2O3/carboxymethyl cellulose sodium and the properties of plasticized starch composite films. Macromol. Mater. Eng. 294: 762-767.
[22] Luo X. G., Liu S. L., Zhou J. P., Zhang L. N., (2009), In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J. Mater. Chem. 19: 3538-3545.
[23] Laudenslager M. J., Schiffman J. D., Schauer C. L., (2008), Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromol. 9: 2682–2685.
[24] Rosca C., Popa M. I., Lisa G., Chitanu G. C., (2005), Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan–carboxymethyl–cellulose complex. Carbohyd. Poly. 62: 35-41.
[25] Koteeswara Reddy N., Ramakrishna Reddy K. T., (2006), Optical behavior of sprayed tin sulphide thin films. Mater. Res. Bull. 41: 414-422.
[26] Ghandoor H. El,  Zidan H. M., Khalil M. M. H., Ismail M. I. M., (2012), Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7: 5734-5745.
[27] Rezay Marand Z., Helmi Rashid Farimani M., Shahtahmasebi N., (2014), Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed. J. 1: 238-247.
[28] Taubert A., Wegner G., (2002), Formation of uniform and monodisperse zincite crystals in the presence of soluble starch. J. Mater. Chem. 12: 805–807.
[29] Raveendran P., Fu J., Wallen S. L., (2003), Completely Green synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125: 13940-13941.
[30] Caizer C., (2015), Nanoparticles Size Effect on Some Magnetic Properties. Springer International Publishing, 475-519.