[1] Fujishima A., Honda K., (1972), Electrochemical photolysis of water at a semiconductor electrode. Nature. 238: 37-38.
[2] Samuneva B., Kozhukharov V., (1993), Sol-gel processing of titanium-containing thin coatings. J. Mater. Sci. 28: 2353-2360.
[3] Wang C. Y., Liu C. Y., Shen T., (1997), The photocatalytic oxidation of phenylmercaptotetrazole in TiO2 dispersions. J. Photochem. Photobiol. A. Chem. 109: 65-70.
[4] Palmer F. L., Eggins B. R., Coleman H. M., (2002), The effect of operational parameters on the photocatalytic degradation of humic acid. J. Photochem. Photobiol. 148: 137-143.
[5] Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., (1995), Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69-96.
[6] Ohko Y., Fujishima A., Hashimoto K., (1998), Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst. J. Phys. Chem. B. 102: 1724-1729.
[7] Herrmann J. M., (1999), Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 53: 115-129.
[8] Lin J., Yu J. C., Lo D., Lam S. K., (1999), Photocatalytic activity of rutile Ti1−x SnxO2 solid solutions. J. Catal. 183: 368-372.
[9] Maruska H. P., Ghosh A. K., (1978), Photocatalytic decomposition of water at semiconductor electrodes. Sol. Energy. 20: 443-458.
[10] Bickley R., Gonzalez-Carreno T., Lees J., Palmisano L., Tille R. J., (1991), A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 92: 178-190.
[11] Yu J., Yu J., Ho W., Jiang Z., (2002), Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New J. Chem. 26: 607-613.
[12] Peng Y. H., Huang G. F., Huang W. Q., (2010), Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv. Powder Technol. 23: 8-12.
[13] Barakat M. A., Schaeffer H., Hayes G., Ismat-Shaha S., (2004), Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. App. Catal. B: Environ. 57: 23–30.
[14] Silva A. M. T., Silva C. G., Drazic G., Faria J. L., (2009), Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catal. Today. 144: 13-18.
[15] Rauf M. A., Meetani M. A., Hisaindee S., (2011), An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination. 276: 13–27.
[16] Kocí K., Mateju K., Obalová L., Krejcíková S., Lacny Z. ´, Plachá D., Capek L., Hospodková A., Solcov O., (2010), Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 96: 239-244.
[17] Li Y., Xie C., Peng S., Lu G., Li S., (2008), Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J. Mol. Catal. A: Chem. 282: 117–123.
[18] Janitabar Darzi S., Mahjoub A. R., Bayat A., (2016), Synthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst. Int. J. Nano Dimens. 7: 33-40.
[19] Rastkar Ebrahimzadeh A., Abbasi M., Jahanbin Sardroodi J., Afshari S., (2015), Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles. Int. J. Nano Dimens. 6: 11-17.
[20] Zakeri S. M. E., Asghari M., Feilizadeh M. Vosoughi M., (2014), A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization. Int. J. Nano Dimens. 5: 329-335.
[21] Abbasi A., Jahanbin Sardroodi J., (2016), A theoretical study on the adsorption behaviors of ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices. Int. J. Nano Dimens. 7: 349-359.
[22] Hirano M., Nakahara N., Ota K., Tanaike O., Inagaki N., (2003), Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem. 170: 39-47.
[23] Kim J., Song K. C., Foncillas S., Pratsinis S., (2001), Dopants for synthesis of stable bimodally porous titania. J. Eur. Ceram. Soc. 21: 2863-2872.
[24] Akhtar M. K., Pratsinis S. E., Mastrangelo S. V. R., (1992), Dopants in vapor-phase synthesis of titania powders. J. Am. Ceram. Soc. 75: 3408–3416.
[25] Karakitsou K. E., Verykios X. E., (1993), Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J. Phys. Chem. 97: 1184-1189.
[26] Mu W., Herrmann J. M., Pichat P., (1989), Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett. 3: 73-84.
[27] Choi W., Termin A., Hoffmann M. R., (1994), The role of metal Ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Phys. Chem. 98: 13669-13679.
[28] Okada K., Yamamoto N., Kameshima Y., Yasumori A., MacKenzie K., (2001), Effect of SiO2 addition on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 84: 1591-1596.
[29] Bsiri N., Zrir M. A., Bardaoui A., Bouaїcha M., (2016), Morphological, structural and ellipsometric investigations of Cr doped TiO2 thin films prepared by sol–gel and spin coating. Ceram. Int. 42: 10599-10607.
[30] Iida Y., Ozaki S., (1961), Grain growth and phase transformation of titanium oxide during calcinations. J. Am. Ceram. Soc. 44: 120-127.
[31] Chao H. E., Yun Y. U., Xingfang H. U., Larbot A., (2003), Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J. Europ. Ceram. Soc. 23: 1457-1464.
[32] Baker R. W., (2004), Membrane technology and application: Wiley Pub, Chichester.
[33] Klug P., Alexander L. E., (1974), X-Ray Diffraction Procedures, Wiley, New York.
[34] Sharma R., Bhatnagar M. C., (1999), Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sens. Actuators B. 56: 215-219.
[35] Lai C. W., Sreekantan S., (2013), Study of WO3 incorporated C-TiO2 nanotubes for efficient visible light driven water splitting performance. J. Alloys Compd. 547: 43–50.
[36] Zhang Z., Shao C., Zhang L., Li X., Liu Y., (2010), Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci. 351: 57–62.
[37] Garadkar K. M., Patil A. A., Hankare P. P., Chate P. A., Sathe D. J., Delekar S. D., (2009), MoS2: Preparation and their characterization. J. Alloys and Comp. 487: 786-789.
[38] Yang Y., Chen X., Feng Y., Yang G.W., (2007), Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire. Nano. Lett. 7: 3879–3883.
[39] Hu L., Yoko T., Kozuka H., Sakka S., (1992), Effects of solvent on properties of sol—gel-derived TiO2 coating films. Thin. Solid. Films. 219: 18–23.
[40] Wang Z., Helmersson U., Käll P. O., (2002), Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Films. 405: 50-54.
[41] Yu J. G., Zhou M. H., Cheng B., Zhao X. J., (2006), Preparation, characterization and photocatalytic of in situ N, S-co-doped TiO2 powders. J. Mol. Catal. A. 246: 176-184.
[42] Yu J. C., Yu J. G., Ho W. K., Zhang L. Z., (2001), Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun. 19: 1942-1943.
[43] Yu J. C., Yu J. G., Ho W. K., Zhang L. Z., (2002), Photocatalytic activity of nano-sized TiO2 powders by sol-gel method, using titanium tetraisopropoxide and EtOH/ H2O Solution. J. Photochem. Photobiol. A. 148: 263-271.
[44] Miyauchi M., Nakajima A., Hashimoto K., Watanabe T., (2000), A highly hydrophilic thin film under 1 μW/cm2 UV Illumination. Adv. Mater. 12: 1923-1927.