[1] Shaker A., Ossaimee M., Zekry A., Abouelatta M., (2015), Influence of gate ovelrap engineering on ambipolar and high frequency characteristics of tunnel-CNTFET. Superlat. Microst. 86: 518-530.
[2] Tans S., Verschueren A., Dekker C., (1998), Room-temperature transistor based on a single carbon nanotube. Nature. 393: 49-51.
[3] Arefinia Z., Orouji A. A., (2009), Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans. Device Mater. Reliab. 9: 237-243.
[4] Wei W., Lu Z., Xueying W., Zhubing W., Ting Z., Na L., Xiao Y., Gongshu Y., (2014), The combined effects of halo and linear doping effects on the high frequency and switching performance in ballistic CNTFET. J. Semicond. 35: 114004-114011.
[5] Wei W., Na L., Yuzhou R., Hao L., Lifen Z., Jin L., Junjie J., Xiaoping C., Kai W., Chunping X., (2013), A computational study of linear doping on the high-frequency and switching performances of hetero material gate CNTFET. J. Semicond. 34: 124002-124007.
[6] Wei W., Xu M., Liu J., Li N., Zhang T., Jiang S., Zhang L., Wang H., Gao J., (2015), Investigation of hetero-material-gate in CNTFETs for ultra low power circuits. J. Semicond. Tech. Sci. 15: 131-144.
[7] Tahne B. A., Naderi A., (2016), SLD-MOSCNT: Anew MOSCNT with step-linear doping profile in the source and drain regions. Int. J. Mod. Phys. B. 30: 1650242-1650242.
[8] Rahman A., Guo J., Datta S., (2003), Theory of Ballistic Nanotransistors. IEEE Trans. Electron Devices. 50: 1853-1864.
[9] Shokri A. A., Karimi Z., (2014), Electronic band structure of a Carbon nanotube superlattice. Int. J. Nano Dimens. 5: 63-67.
[10] Ziabari S. A. S., Saravani M. J. T., (2017), A novel lightly doped drain and source Carbon nanotube field effect transistor (CNTFET) with negative differential resistance. Int. J. Nano Dimens. 8: 107-113.
[11] Koswatta S. O., Nikonov D. E., Lundstrom M. S., (2005), Computational study of carbon nanotube p-i-n tunnel FETs. IEDM Tech. Dig. 518-521.
[12] Pulfrey D. L., , Chen L., (2009), Comparison of p-i-n and n-i-n carbon nanotube FETs regarding high-frequency performance. Solid-State Electron. 53: 935-939.
[13] Appenzeller J., Lin Y. M., Knoch J., Chen Zh., Avouris Ph., (2005), Comparing carbon nanotube transistors the ideal choice: A novel tunneling device design. IEEE Trans. Electron Devices. 52: 2568-2576 .
[14] Naderi A., Tahne B. A., (2016), T-CNTFET with gate-drain overlap two increased saturation current. ECS J. Solid State Sci. Technol. 5: 3032-3036.
[15] Nagavarapu V., Jhaveri R., Woo J. C. S., (2008), The tunnel source (PNPN) N-MOSFET: A novel high performance transistor. IEEE Trans. Electron Devices. 55: 1013-1019.
[16] Pan A., Chui C. O., (2015), Gate-Induced source tunneling FET (GISTFET). IEEE Trans. Electron Devices. 62: 2390-2395.
[17] Wang H., Chang S., Hu Y., He H., He J., Huang Q., He F., Wang G., (2014), A novel barrier controlled tunnel FET. IEEE Trans. Electron Devices. 35: 797-802.
[18] Kordrostami Z., Sheikh M. H., Zarifkar A., (2012), Influence of channel and underlap engineering on the high-frequency and switching performance of CNTFET. IEEE Trans. Nanotechnol. 11: 526-533.
[19] Naderi A., Keshavarzi P., Orouj A. A. i, (2011), LDC–CNTFET: A carbon nanotube field effect transistor with linear doping profile channel. Superlat. Microstr. 50: 145-156.
[20] Guo J., (2004), Carbon nanotube electronics: Modeling, physics, and applications, Phd thesis, Purdue University.