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Abstract
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal 
reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The 
application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of 
important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the quality of the CNT 
process is investigated. Using experimental data, qualities of CNTs are determined for training, testing and 
validation of developed ANFIS model. From the analysis carried out by the ANFIS-based model, the mean 
square deviation and a regression coefficient are found to be 4.4% and 99%, respectively. The validation 
results confirm that the ability of the proposed ANFIS model for predicting the quality of the CNT process 
over a wide range of operational conditions. In addition, sensitivity analysis indicates that the temperature 
has the significant effect (i.e. 94%) on the quality of the CNT process.
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INTRODUCTION
Carbon nanotube (CNT) technology is developing 

very fast leading to decrease in the dimensions of 
devices used in today’s technological applications, 
such as sensors, transistors, field emitters, flat 
panel displays, catalyst [1-4], etc. CNT is a tubular 
structure made of carbon atoms, having diameter 
of nanometer order but length in micrometers. This 
kind of structures was synthesized and studied by 
several researchers [5-10]. For the first time, Iijima’s 
evaluated detailed analysis of helical arrangement 
of carbon atoms in 1991, proved to be a discovery 
report [11]. Since then, CNT has remained an 
exciting material ever. Its so-called extraordinary 
properties: many-fold stronger than steel, harder 
than diamond, electrical conductivity higher 
than copper, thermal conductivity higher than 
diamond, etc. The most common methods used 
for the production of CNTs are laser vaporization 
[12], arc discharge [13], and catalytic chemical 
vapor deposition (CVD) [14]. As compared to arc-

discharge and laser-ablation methods, CVD is a 
simple and economic technique for synthesizing 
CNTs. Arc- and laser-grown CNTs are superior to 
the CVD-grown ones in crystallinity, however, in 
yield and purity, CVD overcome the arc and laser 
methods. This method enables the use of various 
substrates, and allows CNT growth in a variety of 
forms, such as powder, thin or thick films, aligned 
or entangled, straight or coiled nanotubes, or a 
desired architecture of nanotubes on predefined 
sites of a patterned substrate [11]. Therefore 
Among several techniques of CNT synthesis 
available today, chemical vapor deposition (CVD) is 
most popular and widely used because of its ease 
of scale-up and low set-up cost, and particularly 
high production yield [11].  In addition to synthesis 
method, the properties of the CNTs are influenced 
with the different growth condition such as the 
feedstock pressure, the catalyst particle size, 
production temperature, and substrate properties 
and growth time [15-19]. Recent studies showed 
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that 26-28 the diameter is increase with time 
due to expand of nanocrystalline carbon or glassy 
carbon sheath [17]. Also there were some reports 
indicating that the growth at higher temperatures 
yields thinner and longer CNTs in methane (CH4) 
CVD [18]. 

Evaluate the effect of various growth conditions 
on the quality of the synthesized carbon nanotubes 
is difficult, costly and time consuming. Therefore, 
provide a good model to study the effects of 
different conditions on the quality of the synthesis 
of nanotubes is necessary.  Most systems are 
extremely difficult and time demanding to model 
by accurate mathematical equations due to the 
complexity of the system structure, nonlinearity 
and uncertainty [20]. Hence, traditional modeling 
approaches are not usually capable of predicting 
system’s performance correctly. Furthermore, 
intelligent techniques (i.e. neural network, 
fuzzy logic) are often practical for developing an 
accurate model without requiring any explicit 
mathematical representation [21, 22]. An adaptive 
neuro-fuzzy inference system (ANFIS) integrates 
fuzzy logic system with neural network to exploit 
the capability of each other. In fact, An ANFIS 
is constructed so that membership function 
parameters of the fuzzy system are tuned using 
the learning algorithms of the neural network. 
Therefore, the ANFIS architecture can successfully 
predict the nonlinear behavior of systems with 
acceptable accuracy [23].

Herein, we report the synthesis of CNTs through 
CVD method over Co-Mo/MgO catalyst, and 
methane as a carbon source. We focused on the 

influence of the temperature, amount of H2O, and 
reaction time on the quality (IG/ID) of CNTs. IG/ID is 
the intensity ratio of the Raman D-band to G-band 
is often used to estimate the density of structural 
defects in CNTs, providing a relative measure for 
the structural quality of a sample.  Thus, in the 
current investigation, an adaptive neuro-fuzzy 
based inference system is employed to model the 
behavior of the CNTs quality (IG/ID) in presence of 
three input parameters (i.e. temperature, reaction 
time and amount of H2O).

EXPERIMENTAL
Materials

Magnesium oxide, cobalt nitrate, and 
Ammonium heptamolybdate are all provided by 
the Merck Chemicals Inc. CH4 gas is provided by 
Roham Gas Corporation.

Chemical Vapor Deposition (CVD)
Chemical vapor deposition (CVD) is the most 

popular method of producing CNTs nowadays. 
In this process, thermal decomposition of a 
hydrocarbon vapor is achieved in the presence of 
a metal catalyst. The simple schematic of CVD set 
up is shown in Fig. 1.

Catalyst preparation
The catalyst was prepared by loading %10 wt 

of Co and %2 wt of Mo on MgO as support. In a 
typical route, appropriate amounts of Co(NO3)3 
and (NH4)6Mo7O24 were dissolved in 100 ml of 
methanol and 1 g of substrate was added to this 
solution. 

1 
 

 

Fig.1: Schematic diagram of a CVD set up. 

 

  

Fig.1: Schematic diagram of a CVD set up.
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The final mixture was stirred for 2 h and then the 
solvent was evaporated by rotary and finally dried 
at 140 °C for 8 h. The final product was calcined at 
450 °C for 5 h. CNTs synthesis was carried out using 
a controlled amount of water vapor in a fixed bed 
flowed reactor, which was composed of a ceramic 
boat containing 0.4 g of the catalyst placed in a 
horizontal quartz tube. After purging with argon for 
30 min, the methane stream was opened for 1-30 
min with the rate of 50 ml/min. The decomposition 
of methane was carried out at 850-1200°C. 

Characterization
The synthesized sample was characterized 

through the TEM (apparatus model: Zeiss EM 
900), SEM (apparatus model: ZEISS, SIGMA Series 
equipment), Raman spectrometer (apparatus 
model: SENTERRA- BRUKER (Germany)), and XRD 
(apparatus model: Siemens, model D5000).

Adaptive neuro-fuzzy inference system (ANFIS)
An adaptive neuro-fuzzy inference system 

(ANFIS) is a hybrid intelligent system which uses 
the learning ability of the neural network with the 
knowledge representation of the fuzzy logic [24]. 
The architecture of ANFIS model with 2 inputs (x1 
and x2) and one output (φ) is shown in Fig. 2.

As can be seen from Fig. 2, the ANFIS 
architecture contains of five layers feed forward 
neural network which are explained as follows:

- First layer
This layer is named as an input layer. Each 

neuron in this layer saves the parameters of 
the membership function and crisp inputs are 
converted to membership degree values which 
change between 0 and 1. The output signals of this 
layer are calculated by:

𝑂𝑂𝑘𝑘 𝜇𝜇𝑖𝑖 𝑥𝑥𝑗𝑗  𝑖𝑖 𝐼𝐼 𝑗𝑗 … 𝑁𝑁 𝑘𝑘 … 𝑁𝑁 𝐼𝐼                 (1) 
 

𝑂𝑂𝑘𝑘 𝑊𝑊𝑘𝑘  𝜇𝜇𝑘𝑘 𝑥𝑥𝑗𝑗  𝑁𝑁
𝑗𝑗 𝑘𝑘 … 𝐼𝐼                                             (2) 

 

𝑂𝑂𝑘𝑘
𝑊𝑊𝑘𝑘
 𝑊𝑊𝑘𝑘

𝑊𝑊 𝑘𝑘 𝑘𝑘 … 𝐼𝐼                                    (3) 

 

𝑂𝑂𝑘𝑘 𝑊𝑊 𝑘𝑘 𝑝𝑝𝑘𝑘𝑥𝑥 𝑞𝑞𝑘𝑘𝑦𝑦 𝑟𝑟𝑘𝑘 𝑘𝑘 … 𝐼𝐼                                 (4) 
 

𝑂𝑂 𝜑𝜑  𝑂𝑂𝑘𝑘𝑘𝑘 𝑘𝑘 … 𝐼𝐼                                     (5) 
 

𝑅𝑅    𝑉𝑉𝑒𝑒𝑥𝑥𝑝𝑝 𝑖𝑖−𝑉𝑉 𝑒𝑒𝑥𝑥𝑝𝑝  𝑁𝑁
𝑖𝑖 −  𝑉𝑉𝑐𝑐𝑎𝑎𝑙𝑙 𝑖𝑖−𝑉𝑉𝑒𝑒𝑥𝑥𝑝𝑝 𝑖𝑖 𝑁𝑁

𝑖𝑖
  𝑉𝑉𝑒𝑒𝑥𝑥𝑝𝑝 𝑖𝑖−𝑉𝑉 𝑒𝑒𝑥𝑥𝑝𝑝  𝑁𝑁
𝑖𝑖

                          (6) 

 

𝑀𝑀𝑆𝑆𝐷𝐷  
𝑁𝑁
  𝑉𝑉𝑐𝑐𝑎𝑎𝑙𝑙 𝑖𝑖 − 𝑉𝑉𝑒𝑒𝑥𝑥𝑝𝑝 𝑖𝑖 𝑁𝑁
𝑖𝑖                                  (7) 

 

𝜇𝜇 𝑥𝑥 𝑒𝑒𝑥𝑥𝑝𝑝  −  𝑥𝑥−𝑐𝑐𝜎𝜎                                               (8) 

 

𝑥𝑥𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚
𝑥𝑥−𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 −𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
                                              (9) 
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𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑔𝑔𝑒𝑒 𝑖𝑖𝑛𝑛 𝑖𝑖𝑛𝑛𝑝𝑝𝑢𝑢𝑡𝑡 ∗                                 (10) 
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where, μ is the membership degree. As can be 
seen in equation (1), the number of neurons in this 
layer is equal to the product of number of inputs 
(N) and number of fuzzy rules (I).  

- Second layer
Each neuron of this layer performs a connective 

operation (i.e. “AND”) to calculate the firing 
strength of a rule. The number of neurons in this 
layer is equal to the number of fuzzy rules.
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𝑗𝑗 𝑘𝑘 … 𝐼𝐼                                             (2) 

 

𝑂𝑂𝑘𝑘
𝑊𝑊𝑘𝑘
 𝑊𝑊𝑘𝑘
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𝑂𝑂𝑘𝑘 𝑊𝑊 𝑘𝑘 𝑝𝑝𝑘𝑘𝑥𝑥 𝑞𝑞𝑘𝑘𝑦𝑦 𝑟𝑟𝑘𝑘 𝑘𝑘 … 𝐼𝐼                                 (4) 
 

𝑂𝑂 𝜑𝜑  𝑂𝑂𝑘𝑘𝑘𝑘 𝑘𝑘 … 𝐼𝐼                                     (5) 
 

𝑅𝑅    𝑉𝑉𝑒𝑒𝑥𝑥𝑝𝑝 𝑖𝑖−𝑉𝑉 𝑒𝑒𝑥𝑥𝑝𝑝  𝑁𝑁
𝑖𝑖 −  𝑉𝑉𝑐𝑐𝑎𝑎𝑙𝑙 𝑖𝑖−𝑉𝑉𝑒𝑒𝑥𝑥𝑝𝑝 𝑖𝑖 𝑁𝑁
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- Fourth layer
The normalized firing strength is multiplied by 

a linear combination of the inputs (i.e. Takagi–
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Where, pk,qk and rk are adaptive parameters of 
this layer and are called as consequent parameters.

- Fifth layer
The last layer of the network is the weighted 

average of the outputs of fourth layer [25].
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All the above computation of the ANFIS model is 
performed by using MATLAB Fuzzy Logic Toolbox.
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Where, N is the number of data point and  Vcalc 
and Vexp denote the output value of the model 
and experimental data, respectively. Vexp is the 
mean value of the experimental data. The perfect 
agreement is achieved when R2 and RMSD are 
equal to 1 and 0, respectively. 

RESULTS AND DISCUSSIONS
Characteristic properties

XRD analysis was obtained to investigate the 
crystallinity and structure of the samples. Fig. 
3a exhibits the XRD pattern of the Co-Mo/MgO 
catalyst after growth of CNTs. Since MgO and CoO 
have a similar ionic radius, the diffraction peak 
of CoO could be masked by the peaks of MgO. In 
addition, one XRD peak appears for the CNT at 2𝜃= 
26 in the XRD pattern. It can be concluded that 
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the peak of CNT is overlapped by corresponding 
peak of Co2Mo3O8. The Raman technique is used 
in qualitative and quantitative analysis of carbon 
nanotubes. 

The grown CNT were then characterized by 
Raman spectroscopy as shown in Fig. 3b. The 
Raman spectrum consists of in plane bond 
stretching motion of pairs of sp2 hybridized carbon 
atoms due to the disordered graphite around 
1580 cm-1 (G mode) and radial breathing modes 
of A1g symmetry owing to the presence of six 
fold aromatic rings (two-dimensional hexagonal 
lattice) at 1320 cm-1 (D mode). IG/ID ratio reflects 

the quality of the as synthesized CNTs. Results 
of Raman spectroscopy showed that the highest 
quality of nanotubes were obtained at 1000 °C, 
%1 moisture, 50 ml/min of methane flow and 20 
minutes.

The SEM image of prepared composite is 
indicated in Fig. 4a. The image displays multi-
walled nanotubes are produced and their length is 
within the range of 2 to 6 micrometers. Moreover, 
the TEM image (Fig. 4b) established that the 
synthesized CNTs are multi-walled fragments with 
each tube consisting of 2–3 layers and diameters 
in the range of 20-60 nm. 

Fig. 2: Schematic architecture of ANFIS model with two fuzzy rules for two inputs and one output.

Fig. 3: a) XRD patterns of CNTs/ catalyst at 1000 °C, b) The Raman spectra analysis for prepared composite at 1000 and 1100 °C.
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Fig. 2: Schematic architecture of ANFIS model with two fuzzy rules for two inputs and one 
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Development of ANFIS model
In the modeling study, the experimental 

data consists of 120 sets which are randomly 
divided into training (60%), testing (20%) and 
validation (20%) subsets. Each input of the ANFIS 
structure contains three fuzzy sets with Gaussian 
membership function. This function is determined 
according to the following equation:
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Where μ is the degree of the membership 
function and c,σ are parameters of the membership 
function. Since several orders of magnitude for 
input and output variables make the training 
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In the above equation, x, xnorm, xmin and xmax 
indicate the experimental, normalized, minimum 
and maximum values of data, respectively. 

The parameters of these membership functions 
are given in Table 1. In addition, the some rules 
used for modeling system as well as the respective 
membership functions are reported in Table 2.

As mentioned previously, the temperature, 
the time and the humidity are considered as 
input variables whereas the output variable is the 
quality (IG/ID) in this investigation.

Performance of ANFIS model
The regression analysis is performed to compare 

between testing data and predicted values from 
the proposed ANFIS model (Fig. 5). Obviously, 
the predicted quality (IG/ID) values of CNTs agree 
with the experimental data quite well with an 
acceptable correlation coefficient R2 (0.993). 

In order to validate the ANFIS model, the 

Fig. 4: (a) SEM micrograph, (b) TEM image for prepared CNTs at 1000°C, %1 water vapor and 20 min.
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Table 1: Fuzzy rule base of Takagi-Sugeno type ANFIS model.

1 
 

Table 1: Fuzzy rule base of Takagi-Sugeno type ANFIS model. 

Membership functions Input 1(Temperature) 
𝑐𝑐 𝜎𝜎 

Input 2 (Time) 
𝑐𝑐 𝜎𝜎 

Input 3(Amount of H2O) 
𝑐𝑐 𝜎𝜎 

MF1 0.1871                4.2318 1.386                     0.1792 3.2105                   0.0879 

MF2 0.1882                 4.1879 1.423                     0.1839 3.4812                   0.1185 

MF3 0.1905                 3.9741 1.684                     0.1239 3.5679                   0.1205 

 

 

  

Table 2: Parameters of Gaussian membership functions (MF1-MF3) for the optimum ANFIS model.

2 
 

Table 2: Parameters of Gaussian membership functions (MF1-MF3) for the optimum ANFIS model. 

Rule number Description of fuzzy rule 

1 If In1 is MF1 and  In2 is MF2 and In3 is MF2 Then               quality=10.23*In1+2.87*In2-1.03*In3+1.02 

2 If In1 is MF2 and  In2 is MF3 and In3 is MF2 Then               quality=8.41*In1+0.74*In2+0.23*In3+2.18 

3 If In1 is MF2 and  In2 is MF2 and In3 is MF3 Then               quality=11.01*In1-0.21*In2+2.17*In3-2.79 

4 If In1 is MF3 and  In2 is MF3 and In3 is MF1 Then               quality=9.23*In1+1.14*In2-0.71*In3+2.19 

5 If In1 is MF1 and  In2 is MF1 and In3 is MF3 Then               quality=7.21*In1-4.21*In2+3.11*In3+0.86 

 

 
values of quality (IG/ID) predicted by ANFIS model 
and experiments with respect to time in various 
temperatures in the presence of 1%  and 2% of H2O 
vapor are compared in Fig. 6 (a and b), respectively.

The degree of graphitic crystallinity in the CNT 
can be estimated qualitatively by calculating the 
ratio of IG/ID where the higher the intensity ratio, 
the greater the degree of graphitic crystallinity.  The 
highest values of IG/ID obtained for CNT synthesized 
at various temperatures at the 20 min synthesis 
time are indicated that the growth of tubes at 
this synthesis times is less defective as compared 
to those grown at other synthesis time. From IG/
ID calculation, the CNT synthesized at 900-1000°C 
has the highest ratio of IG/ID. This is indicated that 
the CNTs synthesized at 900-1000°C have better 
graphite structure than those synthesized at lower 
and higher synthesis temperatures. The formation 
of metal carbide that favor high temperature 
also leads to the lower graphitization of the CNT 
produced at higher temperature of 1000 oC.

These proposed results Correspond with other 
experimental studies [26]. The growth mechanism 
of CNTs in CVD has been widely studied. As 
generally accepted, CNTs are formed by carbon 
atom dissolving, diffusing, and precipitating 
through the catalyst droplets in CVD process [27-
29]. The dissolving, diffusing and precipitating 
rates of the carbon atoms are affected by the 
carbon atom concentration, the temperature and 
the time of reaction. 

At lower temperature, the dissolving and 
diffusing rates are limited by the low concentration 
of carbon and with the increase of the temperature; 
the dissolving and diffusing rates of carbon atoms 
will increase [26]. In addition, the quality decrease 
of CNTs with temperatures higher than 1000°C 
can be explained from two points. First, if the 
temperature is too high, the chemical reaction 
between carbon and Co-Mo/MgO catalyst may 
take place to form Co-Mo carbide leads to lose 
its catalytic activity for growing CNTs. The Second 
aspect, the high carbon concentration resulted 
from high temperature may cause the dissolving 
rate higher than diffusing and precipitating rates, 
carbon atoms will accumulate on the surface of 
catalysts to form a carbon shell, as a result, the 
catalysts lose their catalytic activity  and lead to 
the lower graphitization of the CNT [26]. Thus, 900-
1000 oC is the optimum range of temperatures to 
obtain high quality CNT. MSD from data of Fig. 6 (a 
and b) is determined 4.4% and this value indicated 
a significant prediction for the quality (IG/ID) of CNT 
process. In order to evaluate the effectiveness of 
the input parameters on the quality (IG/ID) of the 
CNT process, sensitivity analysis is also conducted. 
Accordingly, the sensitivity of each input is defined 
as:
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During the analysis of sensitivity, an input 
is changed between the mean values ± one 
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Fig. 5: Comparison of the testing data and predicted result via ANFIS.

5 
 

 

Fig. 5: Comparison of the testing data and predicted result via ANFIS. 

  

Fig. 6: Quality (IG/ID) with regard to reaction time in various temperatures a) in the presence of 1% of H2O vapor,
b) in the presence 2% of H2O vapor.
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Fig. 7: Sensitivity analysis based on the ANFIS model and the experimental data.

7 
 

  

Fig. 7: Sensitivity analysis based on the ANFIS model and the experimental data. 

 

94

5.29

55

98.4

4.98

52.7

0
10
20
30
40
50
60
70
80
90

100

Temperature Time reaction H2O amount

Se
le
ct
iv
ity

(%
)

Experimental data ANFIS model



305Int. J. Nano Dimens., 8 (4): 298-306, Autumn 2017

H. Alijani et al. 

standard deviation, whereas other inputs are held 
constant at their mean values [30]. Input variables 
sensitivities on the CNT quality based on the 
experimental data and the proposed ANFIS model 
are shown as a graphical bar in Fig. 7. As shown in 
Fig. 7, the sensitivity results of the developed ANFIS 
model are similar to the experimental data, with 
the percent error of less than 5.86%. In addition, 
the temperature has the maximum percentage 
effect (94%) on the quality in comparison with 
other inputs.

CONCLUSIONS
The present study demonstrates the quality 

variation of CNTs grown by CVD of methane on 
Co-Mo/MgO catalyst at 850-1200 °C for 1-30 min 
in the presence of 0-2% of H2O vapor. This study 
is carried out to investigate the applicability of 
an adaptive neuro-fuzzy based inference system 
(ANFIS) approach for modeling the quality of CNTs. 
This technique is utilized to achieve relationship 
between three main parameters namely the 
temperature, the reaction time, and the amount 
of H2O as well as an output variable, the quality. 
Results of the ANFIS model illustrate a very good 
agreement with the measured values for the 
quality (IG/ID) of CNTs (R2=0.99). The sensitivity 
analysis of ANFIS model parameters indicates 
that the temperature is the most sensitive to the 
quality of the CNT process.
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