[1] Hoffmann M. R., Martin S. T., Choi W., (1995), Bahnemann D. W., environmental applications of semiconductor photocatalysis. Chemical reviews. 95: 69-96.
[2] Fujishima A., Honda K., (1972), Electrochemical photolysis of water at a semiconductor electrode. Nature. 238: 37-42.
[3] Erdogan R., Ozbek O., Onal I., (2010), A periodic DFT study of water and ammonia adsorption on anatase TiO2 (001) slab. Surf. Sci. 604: 1029–1033.
[4] Hummatov R., Gulseren O., Ozensoy E., Toffoli D., Ustunel H., (2012), First-Principles investigation of NOx and SOx adsorption on anatase supported BaO and Pt overlayers. J. Phys. Chem. C. 116: 6191-6199.
[5] Liu H., Zhao M., Lei Y., Pan C., Xiao W., (2012), Formaldehyde on TiO2 anatase (1 0 1): A DFT study. J. Comput. Mater. Sci. 15: 389-395.
[6] Batzilla M., Morales E. H., Diebold U., (2006), Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. letts. 96: 026103.
[7] Bellardita M., Addamo M., Di Paola A., Palmisano L., (2007), Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. J. Chem. Phys. 339: 94-103.
[8] Zuas O., Budiman H., Hamim N., (2013), Anatase TiO2 and mixed M-Anatase TiO2 (M = CeO2 or ZrO2) nano powder: Synthesis and characterization. Int. J. Nano. Dimens. 4: 7-12.
[9] Otoufi M. K., Shahtahmasebebi N., Kompany A., Goharshadi E., (2014), Systematic growth of Gold nanoseeds on silica for Silica@Gold core-shell nanoparticles and investigation of optical properties. Int. J. Nano. Dimens. 5: 525-531.
[10] Haruta M., Kobayashi T., Sano H., Yamada N., (1987), Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. J. Chem. Lett. 16: 405-411.
[11] Okumura M, Tsubota S, Haruta M, (2003), Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J. Mol. Catal. A. Chem.199: 73-84.
[12] Lopez N, Norskov J. K., (2002), Catalytic CO oxidation by a Gold nanoparticle: A density functional study. J. Am. Chem. Soc. 124: 11262-11263.
[13] Chen M. S., Goodman D. W., (2006), Structure–activity relationships in supported Au catalysts. Catal. Today. 111: 22-33.
[14] Kung H. H., Kung M. C., Costello C. K., (2003), Supported Au catalysts for low temperature CO oxidation. J. Catal. 216: 425-432.
[15] Hayashi T. M., Tanaka K., Haruta M., (1998), Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178: 566-575.
[16] Salama T, Ohnishi R, Shido T, Ichikawa M, (1996), Highly selective catalytic reduction of NO by H2 over Au 0 and Au (I) impregnated in NaY zeolite catalysts. J. Catal. 162: 169-178.
[17] Rodriguez J. A., Liu G., Jirsak T., Hrbek J., Chang Z. P., Dvorak J., Maiti A., (2002), Chemistry of NO2 on oxide surfaces: Formation of NO3 on TiO2(110) and NO2O vacancy interactions. J. Am. Chem. Soc. 124: 5242-5248.
[18] Chen M. S., Goodman D. W., (2004), The Structure of catalytically active gold on titania. Science. 306: 252-255.
[19] Cosandey F., Madey T. E., (2001), Growth, morphology, interfacial effects and catalytic properties of Au on TiO2. Surf. Rev. Lett. 8: 73-79.
[20] Valden M., Lai X., Goodman D. W., (1998), Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 281: 1647-1650.
[21] Sanchez A., Abbet S., Heiz U., Schneider W. D., Hakkinen H., Barnett R. N., Landman U., (1999), Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. J. Phys. Chem. A. 103: 9573-9578.
[22] Molina L. M., Hammer B., (2005), Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl. Catal. A Gen. 291: 21-31.
[23] Liu J., Liu Q., Fang P., Pan C., Xiao W., (2012), First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. J. Appl. Surf. Sci. 258: 8312-8318.
[24] Habibpour R., Kashi E., Vaziri R., (2017), Computational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption. Int. J. Nano. Dimens. 8: 114-123.
[25] Abbasi A., Sardroodi J. J., (2016), A theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices. Int. J. Nano Dimens. 7: 349-359.
[26] Klaus, D. Sattler, (2010), Handbook of Nanophysics- Nanoparticles and Quantum Dots – CRC Press. ISBN 9781420075441.
[27] Demiroglu I., Li Z. Y., Piccolo L., Johnston R. L., (2017), A DFT study of molecular adsorption on titania supported Au/Rh nanoalloys. J. Comput. Theo. Chem. 1107: 142-151.
[28] Rastkar Ebrahimzadeh A., Abbasi M., Jahanbin Sardroodi J., Afshari S., (2015), Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles. Int. J. Nano. Dimens. 6: 11-17.
[29] Hohenberg P., Kohn W., (1964), Inhomogeneous electron gas. J. Phys. Rev. 136: B864-B871.
[30] Kohn W., Sham L., (1965), Self-Consistent equations including exchange and correlation effects. J. Phys. Rev. 140: A1133-A1138.
[31] The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site ‘http://www.openmxsquare.org’.
[32] Ozaki T., (2003), Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B. 67: 155108-155111.
[33] Ozaki T., Kino H., (2004), Numerical atomic basis orbitals from H to Kr. Phys. Rev. B. 69: 195113.
[34] Perdew J. P., Burke K., Ernzerhof M., (1997), Generalized gradient approximation made simple. Phys. Rev. Letts. 78: 1396-1399.
[35] Koklj A., (2003), Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28: 155−168.
[36] Grimme S., (2006), Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27: 1787-1799.
[37] Web page at: http://rruff.geo.arizona.edu/AMS/amcsd.php.
[38] Wyckoff R. W. G., (1963), Crystal structures, Second edition. Interscience Publishers, USA, New York.