[1] Knop K., Hoogenboom R., Fischer D., Schubert U. S., (2010), Poly (Ethylene Glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Eng. 49: 6288-6295.
[2] Peer D., Karp J. M., Hong S., Farokhzad O. C., Margalit R., Langer R., (2007), Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2: 751-758.
[3] Shi J., Votruba A. R., Farokhzad O. C., Langer R., (2010), Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano. Lett. 10: 3223-3229.
[4] Dreaden E. C., Alkilany A. M., Huang X., Murphy C. J., (2012), The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 41: 2740-2747.
[5] Torchilin V. P., Lukyanov A. N., (2003), Peptide and protein drug delivery to and into tumors: Challenges and solutions. Drug. Discov. Today. 8: 259-267.
[6] Bae Y., Kataoka K., (2009), Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Adv. Drug. Deliv. Rev. 61: 768-776.
[7] Kaasgaard T., Andresen T. L., (2010), Liposomal cancer therapy: Exploiting tumor characteristics. Expert. Opin. Drug. Deliv. 7: 225-234.
[8] Astruc D., Boisselier E., Ornelas C., (2010), Dendrimers designed for functions: from physical, photophysical and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics and nanomedicine. Chem. Rev. 110: 1857-1863.
[9] Thakor A. S., Jokerst J., Zavaleta C., Massoud T. F., Gambhir S. S., (2011), Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett. 11: 4029-4038.
[10] Hammond P. T., (2004), Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater.16: 1271-1278.
[11] Ginebra M. P., Traykova T., Planell J. A., (2006), Calcium phosphate cements as bone drug delivery systems: A review. J. Control. Rel. 113: 102-107.
[12] Patri A. K., Majoros L. J., Baker J. R., (2002), Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Bio. l6: 466-473.
[13] Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R., (2006), Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2: 3413-3418.
[14] Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., (2010), Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9: 172-178.
[15] Zahir Abadi I. J, Sadeghi O., Lotfizadeh H. R., Tavassoli N., Amani V., Amini M. M., (2012), Novel modified manoporous silica for oral drug delivery: Loading and release of clarithromycin. J. Sol Gel Sci. Technol. 61: 90-95.
[16] Tang F., Li L., Chen D., (2012), Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 24: 150-156.
[17] Tang Q., Xu Y., Wu D., Sun Y., Wang J., (2006), Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. Control. Rel. 114: 41-46.
[18] Trewyn B. G., Giri S., Slowing I. I., Lin V. S. Y., (2007), Mesoporous silica nanoparticle based controlled release, drug delivery and biosensor systems. Chem. Commun. 31: 3236-3241.
[19] Yang Q., Wang S. H., Fan P., Wang L., Di Y., Lin K., Xiao F. S., (2005), pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem. Mater. 17: 59-68.
[20] Chomchoey N., Bhongsuwan D., Bhongsuwan T., (2010), Magnetic properties of magnetite nanoparticles synthesized by oxidative alkaline hydrolysis of iron powder. J. Nat. Sci. 44: 963-971.
[21] Hoa L. T. M., Dung T. T., Danh T. M., Duc N. H., Chien D. M., (2009), Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol. J. Phys. 187: 12-18.
[22] Acar H. Y. C., Garaas R. S., Syud F., Bonitatebus P., Kulkarni A. M., (2005), Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. J. Magn. Magn. Mater. 293: 1-8.
[23] Huang Y., Zhang L., Huan W., Xiaojuan L., Yang Y., (2010), A study on synthesis and properties of Fe3O4 nanoparticles by solvothermal method. Glass Phys. Chem. 36: 325-331.
[24] Saadatjooa N., Golshekana M., (2013), Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo [α] xanthenone derivatives. J. Mol. Cat. A: Chem. 377: 173-179.
[25] Maniya N. H., Sanjaykumar R. P., Murthy Z. V. P., (2015), Controlled delivery of acyclovir from porous silicon micro- and nanoparticles. Appl. Sur. Sci. 330: 358-363.
[26] Huang S. T., Du Y. Z, (2001), Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle. Carbohydr. Polym. 83: 1715-1722.
[27] Liu X., Ma Z., Xing J., Liu H., (2004), Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. 270: 1-8.
[28] Masteri-Farahani M., Tayyebi N., (2011), A new magnetically recoverable nanocatalyst for epoxidation of olefins. J. Mol. Catal. A: Chem. 348: 83-88.
[29] Banerjee S. S., Chen D. H., (2007), Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater. 19: 6345-6349.
[30] Moazzen E., Ebrahimzadeh H., Amini M., Sadeghi O., (2013), A novel biocompatible drug carrier for oral delivery and controlled release of antibiotic drug: loading and release of clarithromycin as an antibiotic drug model. J. Sol Gel Sci. Technol. 66: 345-352.