Pre-concentration of Penicillamine using Fe3O4NPS and analysis of it in drug formulations through spectroscopic method

Document Type : Reasearch Paper

Authors

1 Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

2 Department of Biology, Faculty of Science, Payam Nour University, Tehran, Iran.

Abstract

First, an effective pre-concentration of penicillamine was done via Fe3O4NPS. Then, a simple, rapid and sensitive spectrophotometric method is described for the determination of penicillamine by 2, 6-dichlorophenolindophenol (2, 6-DCPIP), as the chromogenic agent in bulk drug and formulations. It produces a bluish green coloured compound with maximum absorbance 610 nm. Beer's law was obeyed in the concentration range 0.005-0.100 ppm with molar absorptivity 1.97 × 103 L/mol/cm and RSD 0.3-0.82%. Statistical comparison of the results with those from the reference method reveals excellent agreement and accuracy and precision was ±0.481 to ±0.33%. This method is also applied on the whole blood and serum samples collected from the confirmed patients. The reaction of penicillamine with 2, 6-DCPIP was confirmed by FTIR and 1H NMR. The main advantage of 2, 6-DCPIP was its stability as a reagent solution, resulting in reliable and reproducible results.

Keywords

Main Subjects


[1] Hou C. H., Hou S. M., Hsueh Y. S., Lin J., Wu H. C., Lin F. H., (2009), The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. J. Biomater. 30: 3956-3960.
[2] Predoi D., Kuncser V., Zaharescu M., Keune W., Sahoo B., Valeanu M., Crisan M., Raileanu M., Jitianu A., Filoti G., (2014), Structural and magnetic properties of iron species/SiO2 nanocomposites obtained by sol–gel methods. Phy. Stat. Solid. 1: 3507-3510.
[3] Kang Y. S., Risbud S., Rabolt J. F., Stroeve P., (1996), Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8: 2209-2211.
[4] Fried T., Shemer G., Markovich G., (2011), Ordered two dimensional arrays of ferrite nanoparticles. Adv. Mater. 13: 1158-1161.
[5] Jitianu A., Raileanu M., Crisan M., Predoi D., Jitianu M., Stanciu L., Zaharescu M., (2006), Fe3O4-SiO2 nanocomposites obtained via alkoxide and colloidal route. J. Sol–Gel Sci. Tech. 40: 317-323.
[6] Predoi D., Crisan O., Jitianu A., Valsangiacom M. C., Raileanu M., Zaharescu M., (2010), Iron oxide in a silica matrix prepared by the sol–gel method. Thin Sol. Film. 515: 6319-6323
[7] Ghandoor H. El, Zidan H. M., Khalil M. M. H., Ismail M. I. M., (2012), Synthesis and some physical properties of magnetite (Fe3O4 ) nanoparticles. Int. J. Electrochem. Sci. 7: 5734-5745.
[8] Rezay Marand Z., Helmi Rashid Farimani M., Shahtahmasebi N., (2014), Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed. J. 1: 238-247.
[9] Wang Y. M., Cao X., Liu G. H., Hong R. Y., Chen Y. M., Chen X. F., Li H. Z., Xu B., Wei D. G., (2011), Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. J. Magnetis. Magnetic. Mater. 323: 2953- 2959.
[10] Silva V. A. J., Andrade P. L., Silva M. P. C., Bustamante D., Luis De Los Santos V., Albino Aguiar J., (2013), Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magnetis. Magnetic. Mater. 343: 138-143.
[11] Zhou M., Andrews L., Bauschlicher C. W., (2001), Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chem. Rev. 101: 1931-1936.
[12] Jernigan G. G., Somorjai G. A., (1994), Carbon monoxide oxidation over three different oxidation states of copper: Metallic copper, copper (I) oxide, and copper (II) oxide: A surface science and kinetic study. J. Catal. 147: 567-572.
[13] Pillai R. U., Deevi S., (2006), Room temperature oxidation of carbon monoxide over copper oxide catalyst. Appl. Catal. B. 64: 146-152.
[14] White B., Yin M., Hall A., Le D., Stolbov S., Rahman T., Turro N., O’Brien S., (2006), Complete CO oxidation over Cu2O nanoparticles supported on Silica gel. Nano Lett. 6: 2095-2099.
[15] Blyholder G., (1964), Molecular orbital view of chemisorbed carbon monoxide. J. Chem. Phys. 68: 2772-2776.
[16] Burda C., Chen X. B., Narayanan R., El-Sayed M. A., (2005), Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105: 1025-1032.
[17] Lee C., Yang W., Parr R. G., (1988), Development of the Colle-Salvetti correlation energy formula into a functional of the electron Density. Phys. Rev. B. 37: 785-789.
[18] Wadt W. R., Hay P. J., (1985), Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82: 270-275.
[19] Glockler G., (1958), Carbon–Oxygen bond energies and bond distances. J. Phys. Chem. 62: 1049-1054.
[20] Luo X. G., Liu S. L., Zhou J. P., Zhang L. N., (2009), In situ synthesis of Fe3O4/cellulose microspheres with magneticinduced protein delivery. J. Mater. Chem. 19: 3538-3545.
[21] Laudenslager M. J., Schiffman J. D., Schauer C. L., (2008), Carboxymethyl chitosan as a matrix material for platinum, gold and silver nanoparticles. Biomacromol. 9: 2682–2685.
[22] Rosca C., Popa M. I., Lisa G., Chitanu G. C., (2005), Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan–carboxymethyl–cellulose complex. Carbohyd. Poly. 62: 35-41.
[23] Koteeswara Reddy N., Ramakrishna Reddy K. T., (2006), Optical behavior of sprayed tin sulphide thin films. Mater. Res. Bull. 41: 414-422.
[24] Ghandoor H. El, Zidan H. M., Khalil M. M. H., Ismail M. I. M., (2012), Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7: 5734-5745.
[25] Rezay Marand Z., Helmi Rashid Farimani M., Shahtahmasebi N., (2014), Study of magnetic, structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed. J. 1: 238-247.
[26] Taubert A., Wegner G., (2002), Formation of uniform and monodisperse zincite crystals in the presence of soluble starch. J. Mater. Chem. 12: 805–807.
[27] Raveendran P., Fu J., Wallen S. L., (2003), Completely green synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125: 13940-13941
[28] Xu H. X., Suslick K. S., (2010), Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano. 4: 3209- 3212.
[29] González B. S., Rodríguez M. J., Blanco C., (2010), One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett. 10: 4217-4221.