[1] Bourianoff G., (2003), The future of nanocomputing. Computer. 36: 44-53.
[2] Haron N. Z., Hamdioui S., Cotofana S., (2009), Emerging non-CMOS nanoelectronic devices-What are they?. 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 63-68
[3] Vetteth A., Walus K., Dimitrov V. S., Jullien G. A., (2002), Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. IEEE Emerging Telecommunications Technologies Conference. 2-4.
[4] Lakshmidevi K., Jordhana P. D., (2015), A novel full comparator design using quantum-dot cellular automata. Int. J. VLSI system Design and Communic. Sys. 3: 603-608
[5] Walus K., Jullien G., Dimitrov V., (2003), Computer arithmetic structures for quantum cellular automata. Conf. Record of the Thirty-Seventh Asilomar Conf. on Signals. Sys. Comput. 1435-1439.
[6] Kim S.-W., Swartzlander E. E., (2009), Parallel multipliers for quantum-dot cellular automata. IEEE Nanotechnol. Mater. and Devices Conf. 67-72
[7] Cho H., Swartzlander Jr E. E., (2009), Adder and multiplier design in quantum-dot cellular automata. IEEE Transact. Comput. 58: 721-727.
[8] Vijayalakshmi P., Kirthika N., (2012), Design of hybrid adder using QCA with implementation of wallace tree multiplier. Int. J. Adv. Eng. Technol. 3: 202-215.
[9] Lu L., Liu W., O'Neill M., Swartzlander E. E., (2013), QCA systolic array design. IEEE Transact. Comput. 62: 548-560.
[10] Basu S., Bal A., (2014), Realization of combinational multiplier using quantum cellular automata. Int. J. Comput. Applic. 99: 1-6.
[11] Bandani-sousan H. A., Mosleh M., Setayeshi S., (2015), Designing and implementing a fast and robust full-adder in quantum-dot cellular automata (QCA) technology. J. Adv. Comput. Res. 6: 27-45.
[12] Lent C. S., Tougaw P. D., Porod W., Bernstein G. H., (1993), Quantum cellular automata. Nanotechnol. 4: 49-57.
[13] Lent C. S., Tougaw P. D., (1997), A device architecture for computing with quantum dots. Proceed. IEEE. 85: 541-557.
[14] Angizi S., Alkaldy E., Bagherzadeh N., Navi K., (2014), Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electronics. 10: 259-271.
[15] Bubna M., Mazumdar S., Roy S., Mall R., (2007), Designing cellular automata structures using quantum dot cellular automata. 14th Annual IEEE Int. Conf. High Perf. Computing.
[16] Javid M., Mohamadi K., (2009), Characterization and tolerance of QCA full adder under missing cells defects. Fifth Int. Conf. MEMS, NANO, and Smart Systems. 85-88.
[17] Lakshmi S. K., (2010), Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design. Int. J. Comput. Applic. 3: 35-42.
[18] Lent C. S., Liu M., Lu Y., (2006), Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnol. 17: 4240-4251.
[19] Wallace C. S., (1964), A suggestion for a fast multiplier. IEEE Transact. Electronic Comput. 1: 14-17.
[20] K'andrea C. B., Schulte M. J., Swartzlander E. E., (1995), Parallel reduced area multipliers. J. VLSI Signal Process. Systems for Signal, Image and Video Technol. 9: 181-191.