[1] DeSantis C. E., Fedewa S. A., Goding Sauer A., Kramer J. L., Smith R. A., Jemal A., (2016), Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA: A Cancer J. Clinicians. 66: 31-42.
[2] Abdoon A. S., Al-Ashkar E. A., Kandil O. M., Shaban A. M., Khaled H. M., El Sayed M. A., Hussein H. A., (2016), Efficacy and toxicity of plasmonic photothermal therapy (PPTT) using gold nanorods (GNRs) against mammary tumors in dogs and cats. Nanomedicine: Nanotechnol., Biology and Medicine. 12: 2291-2297.
[3] Srinivas P., Mounika G., (2011), Nanomedicine: The role of newer drug delivery technologies in cancer. Int. J. Nano Dimens. 2: 1-15.
[4] Huang X., El-Sayed M. A., (2011), Plasmonic photo-thermal therapy (PPTT). Alexandria J. Medic. 47: 1-9.
[5] Ahmad R., Fu J., He N., Li S., (2016), Advanced gold nanomaterials for photothermal therapy of cancer. J. Nanosci. Nanotechnol. 16: 67-80.
[6] Marsh M., Schelew E., Wolf S., Skippon T., (2009), Gold nanoparticles for cancer treatment. Queen's Univ. Kingston. 29.
[7] Wang J., Sui M., Fan W., (2010), Nanoparticles for tumor targeted therapies and their pharmacokinetics. Current Drug Metabol. 11: 129-141.
[8] Praetorius N. P., Mandal T. K., (2007), Engineered nanoparticles in cancer therapy. Recent Patents on Drug Del. Formul. 1: 37-51.
[9] Hwang S., Nam J., Jung S., Song J., Doh H., Kim S., (2014), Gold nanoparticle-mediated photothermal therapy: Current status and future perspective. Nanomedic. 9: 2003-2022.
[10] Heidari Z., Salouti M., Sariri R., (2015), Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide. Nanotechnol. 26: 195101-195108.
[11] Dickerson E. B., Dreaden E. C., Huang X., El-Sayed I. H., Chu H., Pushpanketh S., El-Sayed M. A., (2008), Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer let. 269: 57-66.
[12] Huang X., El-Sayed M. A., (2010), Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1: 13-28.
[13] Abadeer N. S., Murphy C. J., (2016), Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C. 120: 4691-4716.
[14] Singh M., Harris-Birtill D. C., Markar S. R., Hanna G. B., Elson D. S., (2015), Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine: Nanotechnol., Biology and Medic. 11: 2083-2098.
[15] Tolaney S. M., Krop I. E., (2009), Mechanisms of trastuzumab resistance in breast cancer. Anti-Canc. Agents in Medic. Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 9: 348-355.
[16] Daniele L., Sapino A., (2009), Anti-HER2 treatment and breast cancer: State of the art, recent patents, and new strategies. Recent Patents on Anti-Canc. Drug Discov. 4: 9-18.
[17] Leveque D., Gigou L., Bergerat J. P., (2008), Clinical pharmacology of trastuzumab. Current Clinical Pharmacol. 3: 51-55.
[18] Widakowich C., Dinh P., Azambuja E. D., Awada A., Piccart-Gebhart M., (2008), HER-2 positive breast cancer: What else beyond trastuzumab-based therapy?. Anti-Cancer Agents in Medic. Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 8: 488-496.
[19] Green H. N., Martyshkin D. V., Rodenburg C. M., Rosenthal E. L., Mirov S. B., (2011), Gold nanorod bioconjugates for active tumor targeting and photothermal therapy. J. Nanotechnol. 2011: Article ID 631753, 7 pages.
[20] El-Sayed I. H., Huang X., El-Sayed M. A., (2006), Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett.239: 129-135.
[21] Huang X., El-Sayed I. H., Qian W., El-Sayed M. A., (2006), Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128: 2115-2120.
[22] Eghtedari M., Liopo A. V., Copland J. A., Oraevsky A. A., Motamedi M., (2008), Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett. 9: 287-291.
[23] Heidari Z., Sariri R., Salouti M., (2014), Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. J. Photochem. Photobio. B: Biology. 130: 40-46.
[24] Almaki J. H., Nasiri R., Idris A., Majid F. A. A., Salouti M., Wong T. S., Amini N., (2016), Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells. Nanotechnol. 27: 105601-105608.
[25] Liopo A., Conjusteau A., Oraevsky A., (2012), PEG-coated gold nanorod monoclonal antibody conjugates in preclinical research with optoacoustic tomography, photothermal therapy and sensing. Proc. SPIE. 8223: 822344-822349.
[26] Wang Y., Black K. C., Luehmann H., Li W., Zhang Y., Cai X., Li Z. Y., (2013), Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 7: 2068-2077.
[27] Jafari A., Salouti M., Shayesteh S. F., Heidari Z., Rajabi A. B., Boustani K., Nahardani A., (2015), Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI. Nanotechnol. 26: 075101-075107.
[28] Lu J., Owen S. C., Shoichet M. S., (2011), Stability of self-assembled polymeric micelles in serum. Macromolec. 44: 6002-6008.
[29] Zhou F., Xing D., Ou Z., Wu B., Resasco D. E., Chen W. R., (2009), Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Optic. 14: 021009-021009.
[30] Hoffmann J., Bohlmann R., Heinrich N., Hofmeister H., Kroll J., Künzer H., Gieschen H., (2004), Characterization of new estrogen receptor destabilizing compounds: Effects on estrogen-sensitive and tamoxifen-resistant breast cancer. J. National Cancer Ins. 96: 210-218.
[31] Shen S., Tang H., Zhang X., Ren J., Pang Z., Wang D., Yang W., (2013), Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomater: 34: 3150-3158.
[32] Zhu H., Chen Y., Yan F. J., Chen J., Tao X. F., Ling J., Mao Z. W., (2017), Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta biomaterialia. 50: 534-545.
[33] Liu Z., Cai W., He L., Nakayama N., Chen K., Sun X., Dai H., (2007), In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnol. 2: 47-52.
[34] Yang M., Liu Y., Hou W., Zhi X., Zhang C., Jiang X., Cui D., (2017), Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. Nanoscale. 9: 334-340.
[35] Chu M., Shao Y., Peng J., Dai X., Li H., Wu Q., Shi D., (2013), Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomater. 34: 4078-4088.
[36] Shen S., Wang S., Zheng R., Zhu X., Jiang X., Fu D., Yang W., (2015), Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomater. 39: 67-74.