First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Document Type : Reasearch Paper

Authors

1 Deptartment of Computer Science & Engg. Maulana Abul Kalam Azad University of Technology, BF-142, Sector 1, Salt Lake City, Kolkata – 700 064, West Bengal, India.

2 Deptartment of Electronics & Communication Engg. B. P. Poddar Institute of Management & Technology, 137, V. I. P Road, Kolkata – 700 052, West Bengal, India.

3 Department of Physics, University of Western Australia, M013, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.

Abstract

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission property of Gallium Arsenide nanotubes (NT’s) have been analyzed for the chiral vector 3£n£7. This analysis based on the Perdew Burke Ernzerhoff type of parameterization along with Generalized Gradient Approximation (GGA) procedure. Several structural properties like dependency of diameter along with bond length, buckling and band gap have been analyzed. The investigation confirms that buckling property and bond length of these nanotubes decreases as the diameter of the tubes are increasing. It has been observed that (7, 0) nanotube is being considered as most stable nanotube among all.  Binding energy also increases with the increasing diameter of the tubes. This two probe experiment is being carried out at room temperature when two opposite bias voltages have given at the end of these nanotubes using electrical doping procedure. Introducing this procedure a potential drop has been created between the two electrodes’ chemical potential level. Due to this potential drop, the device performance has been enhanced and results in the flow of high conducting current through the central part of the NTs’.

Keywords

Main Subjects


 [1] Ghorbani-Asl M., Paul D., Koziol B., Koziol K., (2015), A computational study of the quantum transport properties of a Cu-CNT composite. Phy. Chem. Chem. Phy. 17: 18273-18277.
[2] Choudhary S., Varshney M., (2015), First-principles study of spin transport in CrO2-CNT-CrO2 magnetic tunnel junction. J. Superconduc. Novel Magnetism. 28: 3141-3145.
[3] Choudhary S., Jalu S., (2015), First-principles study of spin transport in Fe-SiCNT-Fe magnetic tunnel junction. Phys. Lett. A. 379: 1661-1665.
[4] Jain N., Manhas S., Aggarwal A. K., Chaudhry P. K., (2014), Effect of metal contact on CNT based sensing of NO2 molecules. In Phys. Semiconduc. Devices. (pp. 637-639). Springer.
[5] Kolchuzhin V., Mehner J., Markert E., Heinkel U., Wagner C., Schuster J., Gessner T., (2014), System-level-model development of an SWCNT based piezoresistive sensor in VHDL-AMS. In Thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (eurosime). 2014 15th Int. Conf. (pp. 1-6). IEEE.
[6] Husain M. M., (2013), Carbon dioxide adsorption on single walled bamboo-like carbon nanotubes (SWBCNT): A computational study. Int. J. Res. Eng. Sci. (IJRES). 1: 13-26.
[7] Srivastava A., Jain S. K., Khare P. S., (2014), Ab-initio study of structural, electronic, and transport properties of zigzag GaP nanotubes. J. Molec. Model. 20: 2171-2177.
[8] Samanta P. N., Das K. K., (2014), Electron transport properties of zigzag single walled tin carbide nanotubes. Comput. Mater. Sci. 81: 326-331.
[9] Yamacli S., (2014), Investigation of the voltage-dependent transport properties of metallic silicon nanotubes (SiNTs): A first-principles study. Comput. Mater. Sci. 91: 6-10.
[10] Guo Y. D., Yan X. H., Xiao Y., (2014), The spin-dependent transport of Co-encapsulated Si nanotubes contacted with Cu electrodes. Appl. Phys. Lett. 104: 063103-063108.
[11] Choudhary S., Qureshi S., (2012), Effect of moisture on electron transport in Si C nanotubes: An ab-initio study. Phys. Lett. A. 376: 3359-3362.
[12] Li E., Hou L., Cui Z., Zhao D., Liu M., Wang X., (2012), Electronic structures and transport properties of single crystalline gan nanotubes. Nano. 7: 1250014-1250019.
[13] Li E., Cui Z., Liu M., Wang X., (2012), First-principles study on transport properties of saturated single crystalline GaN nanotubes. Integrat. Ferroelect. 137: 134-142.
[14] Cai Y., Zhou M., Zeng M., Zhang C., Feng Y. P., (2011), Adsorbate and defect effects on electronic and transport properties of gold nanotubes. Nanotechnol. 22: 215702-215707.
[15] Gao W., Kahn A., (2003), Electrical doping: The impact on interfaces of π-conjugated molecular films. J. Phys.: Condensed Matter. 15: S2757-S2762.
[16] Rudaz S. L., (1998), U.S. Patent No. 5,729,029. Washington, DC: U.S. Patent and Trademark Office.
[17] Yu S., Frisch J., Opitz A., Cohen E., Bendikov M., Koch N., Salzmann I., (2015), Effect of molecular electrical doping on polyfuran based photovoltaic cells. Appl. Phys. Lett. 106: 54-61.
[18] Kahn A., Koch N., Gao W., (2003), Electronic structure and electrical properties of interfaces between metals and π‐conjugated molecular films. J. Polym. Sci. Part B.: Polym. Phys. 41: 2529-2548.
[19] Dey D., Roy P., Purkayastha T., De D., (2016), A first principle approach to design gated pin nanodiode. J. Nano Res. Trans. Tech. Publications. 36: 16-30.
[20] Dey D., Roy P., De D., (2015), Molecular modeling of nano bio pin FET. In VLSI Design and Test (VDAT), 2015 19th. Int. Symp. IEEE. 1-6.
[21] Dey D., Roy P., De D., (2016), Electronic characterisation of atomistic modelling based electrically doped nano bio pin FET. IET Computers & Digital Techniq. 10: 273-285.
[22] Han Q., Cao B., Zhou L., Zhang G., Liu Z., (2011), Electrical transport study of single-walled ZnO nanotubes: A first-principles study of the length dependence.  J. Phys. Chem. C. 115: 3447-3452.
[23] Kohn W., Sham L. J., (1965), Self-consistent equations including exchange and correlation effects. Phys. Rev. 140: A1133-A1138.
[24] Gross E. K., Dreizler R. M., (Eds.), (2013), Density functional theory (Vol. 337). Springer Science & Business Media.
[25] Atomistix ToolKit version 13.8.0, QuantumWise A/S (www quantumwise.com).
[26] Zienert A., Schuster J., Streiter R., Gessner T., (2010), Transport in carbon nanotubes: Contact models and size effects. Phys. Status Solid. (b). 247: 3002-3005.
[27] Renugopalakrishnan V., Madrid G., Cuevas G., Hagler A. T., (2000), Density functional studies of molecular structures of N-methyl formamide, N, N-dimethyl formamide, and N, N-dimethyl acetamide. J. Chem.  Sci. 112: 35-42.
[28] Chauhan S. S., Srivastava P., Shrivastava A. K., (2014), Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: An ab initio approach. Appl. Nanosci. 4: 461-467.
[29] Stokbro K., (2008), First-principles modeling of electron transport. J. Phys.: Cond. Mat. 20: 064216-064221.
[30] Datta S., (2005), Quantum transport: Atom to transistor. Cambridge University Press.
[31] Mealli C., (2006), Computational inorganic chemistry, in Bartini, I. (Ed.): ‘Encyclopedia of life support systems (EOLSS)’ (Developed under the Auspices of the UNESCO, Eolss Publishers Oxford, UK, 1-45.
[32] Xia C. J., Liu D. S., Liu H. C., (2012), Phenylazoimidazole as a possible optical molecular switch: An ab initio study. Optik-Int. J. Light and Electron Optics. 123: 1307-1310.
[33] Jiuxu S., Yintang Y., Hongxia L., Lixin G., (2011), Negative differential resistance in an (8, 0) carbon/boron nitride nanotube heterojunction. J. Semiconduc. 32: 042003-042009.
[34] Sedigh Ziabari S. A., Tavakoli Saravani M. J., (2017), A novel lightly doped drain and source Carbon nanotube field effect transistor (CNTFET) with negative differential resistance. Int. J. Nano Dimens. 8: 107-113.
Zakeri S. M. E., Asghari M., Feilizadeh M., Vosoughi M., (2014), A visible light driven doped TiO2  nanophotocatalyst: Preparation and characterization. Int. J. Nano Dimens. 5: 329-335.