[1] Ghorbani-Asl M., Paul D., Koziol B., Koziol K., (2015), A computational study of the quantum transport properties of a Cu-CNT composite. Phy. Chem. Chem. Phy. 17: 18273-18277.
[2] Choudhary S., Varshney M., (2015), First-principles study of spin transport in CrO2-CNT-CrO2 magnetic tunnel junction. J. Superconduc. Novel Magnetism. 28: 3141-3145.
[3] Choudhary S., Jalu S., (2015), First-principles study of spin transport in Fe-SiCNT-Fe magnetic tunnel junction. Phys. Lett. A. 379: 1661-1665.
[4] Jain N., Manhas S., Aggarwal A. K., Chaudhry P. K., (2014), Effect of metal contact on CNT based sensing of NO2 molecules. In Phys. Semiconduc. Devices. (pp. 637-639). Springer.
[5] Kolchuzhin V., Mehner J., Markert E., Heinkel U., Wagner C., Schuster J., Gessner T., (2014), System-level-model development of an SWCNT based piezoresistive sensor in VHDL-AMS. In Thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (eurosime). 2014 15th Int. Conf. (pp. 1-6). IEEE.
[6] Husain M. M., (2013), Carbon dioxide adsorption on single walled bamboo-like carbon nanotubes (SWBCNT): A computational study. Int. J. Res. Eng. Sci. (IJRES). 1: 13-26.
[7] Srivastava A., Jain S. K., Khare P. S., (2014), Ab-initio study of structural, electronic, and transport properties of zigzag GaP nanotubes. J. Molec. Model. 20: 2171-2177.
[8] Samanta P. N., Das K. K., (2014), Electron transport properties of zigzag single walled tin carbide nanotubes. Comput. Mater. Sci. 81: 326-331.
[9] Yamacli S., (2014), Investigation of the voltage-dependent transport properties of metallic silicon nanotubes (SiNTs): A first-principles study. Comput. Mater. Sci. 91: 6-10.
[10] Guo Y. D., Yan X. H., Xiao Y., (2014), The spin-dependent transport of Co-encapsulated Si nanotubes contacted with Cu electrodes. Appl. Phys. Lett. 104: 063103-063108.
[11] Choudhary S., Qureshi S., (2012), Effect of moisture on electron transport in Si C nanotubes: An ab-initio study. Phys. Lett. A. 376: 3359-3362.
[12] Li E., Hou L., Cui Z., Zhao D., Liu M., Wang X., (2012), Electronic structures and transport properties of single crystalline gan nanotubes. Nano. 7: 1250014-1250019.
[13] Li E., Cui Z., Liu M., Wang X., (2012), First-principles study on transport properties of saturated single crystalline GaN nanotubes. Integrat. Ferroelect. 137: 134-142.
[14] Cai Y., Zhou M., Zeng M., Zhang C., Feng Y. P., (2011), Adsorbate and defect effects on electronic and transport properties of gold nanotubes. Nanotechnol. 22: 215702-215707.
[15] Gao W., Kahn A., (2003), Electrical doping: The impact on interfaces of π-conjugated molecular films. J. Phys.: Condensed Matter. 15: S2757-S2762.
[16] Rudaz S. L., (1998), U.S. Patent No. 5,729,029. Washington, DC: U.S. Patent and Trademark Office.
[17] Yu S., Frisch J., Opitz A., Cohen E., Bendikov M., Koch N., Salzmann I., (2015), Effect of molecular electrical doping on polyfuran based photovoltaic cells. Appl. Phys. Lett. 106: 54-61.
[18] Kahn A., Koch N., Gao W., (2003), Electronic structure and electrical properties of interfaces between metals and π‐conjugated molecular films. J. Polym. Sci. Part B.: Polym. Phys. 41: 2529-2548.
[19] Dey D., Roy P., Purkayastha T., De D., (2016), A first principle approach to design gated pin nanodiode. J. Nano Res. Trans. Tech. Publications. 36: 16-30.
[20] Dey D., Roy P., De D., (2015), Molecular modeling of nano bio pin FET. In VLSI Design and Test (VDAT), 2015 19th. Int. Symp. IEEE. 1-6.
[21] Dey D., Roy P., De D., (2016), Electronic characterisation of atomistic modelling based electrically doped nano bio pin FET. IET Computers & Digital Techniq. 10: 273-285.
[22] Han Q., Cao B., Zhou L., Zhang G., Liu Z., (2011), Electrical transport study of single-walled ZnO nanotubes: A first-principles study of the length dependence. J. Phys. Chem. C. 115: 3447-3452.
[23] Kohn W., Sham L. J., (1965), Self-consistent equations including exchange and correlation effects. Phys. Rev. 140: A1133-A1138.
[24] Gross E. K., Dreizler R. M., (Eds.), (2013), Density functional theory (Vol. 337). Springer Science & Business Media.
[25] Atomistix ToolKit version 13.8.0, QuantumWise A/S (www quantumwise.com).
[26] Zienert A., Schuster J., Streiter R., Gessner T., (2010), Transport in carbon nanotubes: Contact models and size effects. Phys. Status Solid. (b). 247: 3002-3005.
[27] Renugopalakrishnan V., Madrid G., Cuevas G., Hagler A. T., (2000), Density functional studies of molecular structures of N-methyl formamide, N, N-dimethyl formamide, and N, N-dimethyl acetamide. J. Chem. Sci. 112: 35-42.
[28] Chauhan S. S., Srivastava P., Shrivastava A. K., (2014), Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: An ab initio approach. Appl. Nanosci. 4: 461-467.
[29] Stokbro K., (2008), First-principles modeling of electron transport. J. Phys.: Cond. Mat. 20: 064216-064221.
[30] Datta S., (2005), Quantum transport: Atom to transistor. Cambridge University Press.
[31] Mealli C., (2006), Computational inorganic chemistry, in Bartini, I. (Ed.): ‘Encyclopedia of life support systems (EOLSS)’ (Developed under the Auspices of the UNESCO, Eolss Publishers Oxford, UK, 1-45.
[32] Xia C. J., Liu D. S., Liu H. C., (2012), Phenylazoimidazole as a possible optical molecular switch: An ab initio study. Optik-Int. J. Light and Electron Optics. 123: 1307-1310.
[33] Jiuxu S., Yintang Y., Hongxia L., Lixin G., (2011), Negative differential resistance in an (8, 0) carbon/boron nitride nanotube heterojunction. J. Semiconduc. 32: 042003-042009.
[34] Sedigh Ziabari S. A., Tavakoli Saravani M. J., (2017), A novel lightly doped drain and source Carbon nanotube field effect transistor (CNTFET) with negative differential resistance. Int. J. Nano Dimens. 8: 107-113.
Zakeri S. M. E., Asghari M., Feilizadeh M., Vosoughi M., (2014), A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization. Int. J. Nano Dimens. 5: 329-335.