Structural, magnetic and electrical properties of pure and Dy-doped Fe2O3 nanostructures synthesized using chemical thermal decomposition technique

Document Type : Reasearch Paper

Authors

Department of Chemistry, Semnan University, Semnan, Iran.

Abstract

Pure (S1) and Dy3+-doped α-Fe2O3 (S2 and S3) nanoparticles were prepared by a combustion synthesis method at 700 ºC for 8 h using Fe(acac)3 (Tris(acetylacetonato)Iron(III)) as raw material. Characterizations of the prepared powders were carried out by powder X-ray diffraction (PXRD). Structural analysis was performed by the FullProf program employing profile matching with constant scale factors. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), elemental maps analysis and energy-dispersive X-ray spectroscopy (EDS) were also performed to determine the dopant amount in the α-Fe2O3 crystal structure (S3). The results showed that the patterns had a main hexagonal structure with space group R . The cell parameters data, calculated by rietveld analysis, showed that the cell parameters were decreased with increasing the dopant (Dy3+) amount in the α-Fe2O3 crystal structure. The average particles sizes estimated from TEM images for S3 were about 60 nm. Besides, the magnetic properties of S1 and S3 were measured by vibrating sample magnetometer (VSM). It was found that with the addition of Dy3+ ions into the Fe2O3 system, the coercivity was decreased and the remanent magnetization was abruptly increased. The influence of dysprosium addition was also studied using electrochemical impedance spectroscopy. This study showed that in the presence of dysprosium ion, the charge transfer resistant increased in the electrochemical process.

Keywords

Main Subjects


[1] Xinghong W., Li Z., Yonghong N., Jianming H., Xiaofeng C., (2009), Fast preparation, characterization, and property study of α-Fe2O3 nanoparticles via a simple solution combusting method. J. Phys. Chem. 113: 7003-7008.
[2] Kesavan V., Sivanand P. S., Chandrasekaran S., Koltypin Yu., Gedanken A., (1999), Catalytic aerobic oxidation of cycloalkanes with nanostructured amorphous metals and alloys. Angew. Chem. Int. Ed. 38: 3521-3523.
[3] Huo L. H., Li W., Lu  L. H., Cui H. N., Xi S. Q., Wang J., Zhao B., Shen Y. C., Lu Z. H., (2000), Preparation, structure, and properties of three-dimensional ordered α-Fe2O3 nanoparticulate film. Chem. Mater. 12: 790-794.
[4] Suresh K., Patil K. C., (1993), A combustion process for the instant synthesis of γ-iron oxide. J. Mater. Sci. Lett. 12: 572-574.
[5] Kroell M., Pridoehl M., Zimmermann G., Pop L., Odenbach S., Hartwig A., Magn J., (2005), Magnetic and rheological characterization of novel ferrofluids. J. Magn. Mater. 289: 21-24.
[6] Kang Y. S., Risbud S., Rabolt J. F., Stroeve P., (1996), Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8: 2209-2211.
[7] Zhang S., Chen X. J., Gu C. R., Zhang Y., Xu J. D., Bian Z. P., Yang D., Gu N., (2009), The effect of Iron Oxide magnetic nanoparticles on smooth muscle cells. Nanoscale Res. Lett. 4: 70-77.
[8] Srivastava R., Yadav B. C., (2012), Nanaostructured ZnO, ZnO-TiO2 and ZnO-Nb2O5 as solid-state humidity sensor. Adv. Mat. Let. 3: 197-203.
[9] Chen L., Pang X., Yu G., Zhang J., (2010), In-situ coating of MWNTs with sol-gel TiO2 nanoparticles. Adv. Mat. Lett. 1: 75-78.
[10] Askarinezhad A., Morsali A., (2008), Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater. Lett. 62: 478-482.
[11] Sun Z. Y., Yuan H. Q., Liu Z. M., Han B. X., Zhang X. R., (2005), A highly efficient chemical sensor material for H2S : α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mat. 17: 2993-2997.
[12] Jing Z. H., Wang Y., Wu S. H., (2006), Preparation and gas sensing properties of pure and doped γ-Fe2O3 by an anhydrous solvent method. Sens. Actuators. 113: 177-181.
[13] Lee E. T., Jang G. E., Kim C. K., Yoon D. H., (2001), Fabrication and gas sensing properties of Fe2O3 thin film prepared by plasma enhanced chemical vapor deposition (PECVD). Sens. Actuators Chem. 77: 221-227.
[14] Lim I. S., Jang F. E., Kim C. K., Yoon D. H., (2001), Fabrication and gas sensing characteristics of pure and Pt-doped γ-Fe2O3 thin film. Sens. Actuators. 77: 215-220.
[15] Dai Z. R., Pan Z. W., Wang Z. L., (2003), Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Mat. 13: 9-23.
[16] Zheng W., Li Z. Y., Zhang H. N., Wang W., Wang Y., Wang C., (2009), Electrospinning route for α-Fe2O3 ceramic nanofibers and their Gas sensing properties. Mater. Res. Bull. 44: 1432-1436.
[17] Segadaes A. M., (2006), Oxide powder synthesis by the combustion route. Eur. Ceram. News Lett. 9: 1-5.
[18] Mukasyan A. S., Rogachev A. S., (2008), Discrete reaction waves: Gasless combustion of solid powder mixtures. Prog. Energy Comb. Sci. 34: 377-416.
[19] Kleiman-Shwarsctein A., Huda M. N., Walsh A., Yan Y., Stucky G. D., Hu Y.-S., Al-Jassim M. M., McFarland E. W., (2010), Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: Experiment and theory. Chem. Mater. 22: 510-517.
[20] Kleiman-Shwarsctein A., Hu Y.-S., Forman A. J., Stucky G. D., McFarland E.W., (2008), Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. 112: 15900-15907.
[21] Glasscock J. A., Barnes P. R. F., Plumb I. C., Savvides N., (2007), Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. 111: 16477-16488.
[22] Cesar I., Kay A., Gonzales Martinez J. A., Graetzel M., (2006), Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-Directing effect of Si-Doping. J. Am. Chem. Soc. 128: 4582-4583.
[23] Ingler W. B., Baltrus J. P., Khan S. U. M., (2004), Photoresponse of p-type zinc-doped iron (III) oxide thin films. J. Am. Chem. Soc. 126: 10238-10239.
[24] Goyal G., Dogra A., Rayaprol S., Kaushik S. D., Siruguri V., Kishan H., (2012), Structural and magnetization studies on nanoparticles of Nd doped α-Fe2O3. Mat. Chem. Phys. 134: 133-138.
[25] Bahaa Abu-Zied M., Asiri A. M., (2014), Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: Effect of calcination temperature. J. Rare Earths. 32: 259-264.
[26] Kanga J-G., Seog Gwagb J., Sohn Y., (2015), Synthesis and characterization of Dy(OH)3 and Dy2O3 nanorods and nanosheets. Ceram. Int. 41: 399-4006.
[27] Pinkas J., Reichlova V., Zboril R., Moravec Z., Bezdicka P., Matejkova J., (2008), Sonochemical synthesis of amorphous nanoscopic iron (III) oxide from Fe(acac)3. J. Ultrason. Sonochem. 15: 257-264.
[28] Almeida T., Fay M., Zhu Y. Q., Brown P. D., (2009), Process map for the hydrothermal synthesis of α-Fe2O3 nanorods. J. Phys. Chem. 113: 18689-18698.
[29] Zhang G. Y., Xu Y.Y., Gao D. Z., Sun Y. Q., (2011), α-Fe2O3 nanoplates: PEG-600 assisted hydrothermal synthesis and formation mechanism. J. Alloys. Compd. 509: 885-890.
[30] Zhang G. Y., Feng Y., Xu Y. Y., Gao D. Z., Sun Y. Q., (2012), Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mate. Res. Bull. 47: 625-630.
[31] Darezereshki E., (2011), One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemita. Mater. Lett. 65: 642-645.
[32] Gu F., Wang Sh. F., Lu M. K., Zhou G. J., Xu D., Yuan D. R., (2004), Structure evaluation and highly enhanced luminescence of Dy3+-doped ZnO nanocrystals by Li+ doping via combustion method.  Langmuir. 20: 3528-3531.
[33] Sahoo S. K., Agarwal K., Singh A. K., Polke B. G., Raha K. C., (2010), Characterization of γ- and a-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of a-Fe2O3. Int. J. Eng. Sci. Tech. 2: 118-126.
[34] ChangLiang H., HongYe Z., ZhenYu S., ZhiMin L., (2010), Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane. Sci. China. Chem. 53: 1502-1508.
[35] Yogi A., Varshney D., (2013), Magnetic and structural properties of pure and Cr-doped haematite: α-Fe2−xCrxO3 (0 ≤ x ≤ 1). J. Adv. Ceram. 2: 360-369.
[36] Rabanal M. E., Rez A. Va., Levenfeld B., Torralba J. M., (2003), Magnetic properties of Mg-ferrite after milling process. J. Mater. Process. Technol. 143: 470-474.
[37] Huang Y., Tang Y., Wang J., Chen Q., (2006), Synthesis of MgFe2O4 nanocrystallites under mild conditions. Mater. Chem. Phys. 97: 394-397.