Comparative account of antifungal activity of green and chemically synthesized Zinc Oxide nanoparticles in combination with agricultural fungicides

Document Type : Reasearch Paper

Authors

Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal- 131039, Sonipat, Haryana, India.

Abstract

The present study aims at study on combined effect of zinc oxide nanoparticles (ZnO) with common agricultural fungicides. Nanoparticles were synthesized using chemical reduction process and characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Synthesized nanoparticles were observed to be in size range of 12-63 nm as confirmed by TEM micrograph. DLS established polydisperse nature of nanoparticles and provided effective hydrodynamic diameter of 76.15 nm, confirming the hypothesis of particles being in nano range. Nanoparticles were tested against fungal phytopathogens, namely A. alternata, A. niger, B. cinerea, F. oxysporum and P. expansum. Nanoparticles used in the study exhibited good antifungal activity. Both classes of nanoparticles (green and chemically synthesized) w

Keywords


[1] Grover A., Gowthaman R., (2003), Strategies for development of fungus-resistant transgenic plants. Curr. Sci. India. 84: 330-340.
[2] Pennisi E., (2001), The push to pit genomics against fungal pathogens. Science. 292: 2273-2274.
[3] IANS-Indo-Asian News Service, (2012), Stop fungal disease in crops, feed 600 million. http://zeenews.india.com/news/eco-news/stop-fungal-disease-in-crops-feed-600-million_769673.html. Published 12 April 2012, Accessed 9 January 2015.
[4] Liu J., Sui Y., Wisniewski M., Droby S., Liu Y., (2013), Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 167: 153-160.
[5] Leroch M., Kretschmer M., Hahn M., (2011), Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J. Phytopathol. 159: 63–65.
[6] Jamdagni P., Rana J. S., Khatri P., (2017), Rapid optical detection strategy for human pathogens: A brief review. J. Infect. Dis. Diagn. 2: 115-121.
[7] Khatami M., Amini E., Amini A., Mortazavi S. M., Farahani Z. K., Heli H., (2017),  Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iranian J. Biotech. 15: 95-101.
[8] Khatami M., Heli H., Jahani P. M., Azizi H., Nobre M. A. L., (2017), Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. IET Nanobiotechnol. 11: 709-713.
[9] Khatami M., Kharazi S., Farahani Z. K., Azizi H., Nobre M. A. L., (2017), The anti-cancer effect of octagon and spherical silver nanoparticles on MCF-7 breast cancer cell line. Tehran Univ. Med. J. 75: 72-76.
[10] Ahmed S., Ahmad M., Swami B. L., Ikram S., (2016), A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7: 17–28.
[11] Azizi Z., Pourseyedi S., Khatami M., Mohammadi H., (2016), Stachys lavandulifolia and Lathyrus sp. mediated for green synthesis of silver nanoparticles and evaluation its antifungal activity against Dothiorella sarmentorum. J. Clust. Sci. 27: 1613-1628.
[12] Bobo D., Robinson K. J., Islam J., Thurecht K. J., Corrie S. R., (2016), Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 33: 2373–2387.
[13] Chen G., Roy I., Yang C., Prasad P. N., (2016), Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 116: 2826–2885.
[14] Jamdagni P., Khatri P., Rana J. S., (2016), Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int. Nano Lett. 6: 139-146.
[15] Khatami M., Nejad M. S., Salari S., Almani P. G. N., (2016), Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnol. 10: 237-243.
[16] Nejad M. S., Bonjar G. H. S., Khatami M., Amini A., Aghighi S., (2017), In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnol. 11: 236- 240.
[17] Sirelkhatim A., Mahmud S., Seeni A., Kaus N. H. M., Ann L. C., Bakhori S. K. M., Hasan H., Mohamad D., (2015), Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7: 219–242.
[18] Food and Drug Administration, (2015), Select Committee on GRAS Substances Opinion: Zinc Salts. USA. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm261041.htm. Accessed 25 August 2016.
[19] Espitia P. J. P., Soares N. F. F., Coimbra J. S. R., de Andrade N. J., Cruz R. S., Medeiros E. A. A., (2012), Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioproc. Technol. 5: 1447–1464.
[20] Li Q., Mahendra S., Lyon D. Y., Brunet L., Liga M. V., Li D., Alvarez P. J., (2008), Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42: 4591-4602.
[21] Marcous A., Rasouli  S., Ardestani F., (2017), Low-density polyethylene films loaded by titanium dioxide and zinc oxide nanoparticles as a new active packaging system against Escherichia coli O157:H7 in fresh calf minced meat. Packag. Technol. Sci. 30: 693-701.
[22] Marcous A., Rasouli  S., Ardestani F., (2017), Inhibition of Staphylococcus aureus growth in fresh calf minced meat using low density polyethylene films package promoted by titanium dioxide and zinc oxide nanoparticles. J. Partic. Sci. Technol. 3: 1-11.
[23] Güy N., Özacar M., (2016), The influence of noble metals on photocatalytic activity of ZnO for congo red degradation. Int. J. Hydrogen Energy. 41: 20100-20112.
[24] Rokhsat E., Akhavan O., (2016), Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl. Surf. Sci. 371: 590-595.
[25] Soltaninezhad M., Aminifar A., (2011), Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants. Int. J. Nano Dimens. 2: 137-145.
[26] Kumar R., Umar A., Kumar G., Nalwad H. S., (2017), Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 43: 3940-3961.
[27] Narasimha G., Sridevi A., Prasad B. D., Kumar B. P., (2014), Chemical synthesis of zinc oxide (ZnO) nanoparticles and their antibacterial activity against a clinical isolate Staphylococcus aureus. Int. J. Nano Dimens. 5: 337-340.
[28] Central Insecticides Board & Registration Committee, (2017), Ministry of Agriculture & Farmers Welfare, India. http://cibrc.nic.in/. Accessed 28 June 2017.
[29] Jamdagni P., Khatri P., Rana J. S., (2016), Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud. Univ., Sci. doi:10.1016/j.jksus.2016.10.002.
[30] Gnanasangeetha D., Thambavani S., (2013), One pot synthesis of zinc oxide nanoparticles via chemical and green method. Res. J. Mater. Sci. 1: 1-8.
[31] Jayaseelan C., Rahuman A. A., Kirthi A. V., Marimuthu S., Santhoshkumar T., Bagavan A., Gaurav K., Karthik L., Rao K. V., (2012), Novel microbial route to synthesize ZnO nanoparticles using  Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spec. Chimi. Acta A. Mol. Biomol. Spec. 90: 78-84.
[32] Tantra R., Schulze P., Quincey P., (2010), Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology. 8: 279–285.
[33] Jamdagni P., Khatri P., Rana J. S., (2018), Biogenic synthesis of silver nanoparticles from leaf extract of Elettaria cardamomum and their antifungal activity against phytopathogens.  Adv. Mater. Proc. 3: 129-135. 
[34] Yung K., Ming H., Yen C., Chao H., (2012), Synthesis of 1D, 2D and 3D ZnO polycrystalline nanostructures using sol-gel method. J. Nanotechnol. 2012: 712850-712858.
[35] Khatami M., Mehnipor R., Poor M. H. S., Jouzani G. S., (2016), Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J. Clust. Sci. 27: 1601-1612.
[36] Talam S., Karumuri S. R., Gunnam N., (2012), Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012: 372505-372511.
[37] Molahasani N., Sadjadi M. S., Zare K., (2013), Correlation of morphology and luminescent properties of ZnO nano particles to different surfactants via hydrothermal method. Int. J. Nano Dimens. 4: 161-166.
[38] Jegan A., Ramasubbu A., Karunakaran K., Vasanthkumar S., (2012), Synthesis and characterization of zinc oxide – agar nanocomposite. Int. J. Nano Dimens. 2: 171-176.
[39] Lipovsky A., Nitzan Y., Gedanken A., Lubart R., (2011), Antifungal activity of ZnO nanoparticles--the role of ROS mediated cell injury. Nanotechnol. 22: 105101-105108.
[40] Sawai J., Shoji S., Igarashi H., Hashimoto A., Kokugan T., Shimizu M., Kojima H., (1998),  Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86: 521–522.
[41] Sinha R., Karan R., Sinha A., Khare S. K., (2011), Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 102: 1516–1520.
[42] He L., Liu Y., Mustapha A., Lin M., (2011), Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 166: 207-215.
[43] Singh P., Nanda A., (2013), Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles. J. Chem. Pharm. Res. 5: 457-463.
[44] Zare E., Pourseyedi S., Khatami M., Darezereshki E., (2017), Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's  bio-activity. J. Mol. Struct. 1146: 96-103.
[45] Li J., Sang H., Guo H., Popko J. T., He L., White J. C., Dhankher O. P., Jung G., Xing B., (2017), Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnol. 28: 155101-155108.
[46] Padmavathy N., Vijayaraghavan R., (2008), Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mat. 9: 1-7.
[47] PPDB, Carbendazim. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/116.htm. Accessed 6 January 2017.
[48] Castro V. L., Tambasco A. J., Paraíba L. C., Tambasco D. D., (1999), Cytogenetic and teratological effects of mancozeb pre natal exposure on rats. Braz. Arch. Biol. Technol. 42: 127-134.
[49] PPDB, Mancozeb. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/424.htm. Accessed 6 January 2017.
[50] PPDB, Thiram. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/642.htm. Accessed 6 January 2017.
[51] Elskens M. T., Penninckx M. J., (1997), Thiram and dimethyldithiocarbamic acid interconversion in Saccharomyces cerevisiae: A possible metabolic pathway under the control of the glutathione redox cycle. Appl. Environ. Microb. 63: 2857–2862.
[52] Xue J., Luo Z., Li P., Ding Y., Cui Y., Wu Q., (2014),  A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci. Rep. 4: 5408-5415.
[53] Chauhan R., Reddy A., Abraham J., (2015), Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl. Nanosci. 5: 63–71.
[54] Kairyte K., Kadys A., Luksiene Z., (2013), Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. B. 128: 78-84.
[55] Narendhran S., Sivaraj R., (2016), Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. Bull. Mater. Sci. 39: 1–5.
[56] Rajiv P., Rajeshwari S., Venckatesh R., (2013), Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spec. Chim. Acta Part A. 112: 384–387.
[57] Sharma R. K, Ghose R., (2015), Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram. Int. 41: 967–975.
[58] Isaei E., Mansouri S., Mohammadi F., Taheritarigh S., Mohammadi Z., (2016), Novel combinations of synthesized ZnO NPs and ceftazidime: Evaluation of their activity against standards and new clinically isolated Pseudomonas aeruginosa. Avicenna J. Med. Biotechnol. 8: 169-174.
[59] Ghasemi F., Jalal R., (2016), Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 6: 118–122.
[60] Luo Z. H., Wu Q.S., Xue J. Z., Ding Y. P., (2013), Selectively enhanced antibacterial effects and ultraviolet activation of antibiotics with ZnO nanorods against Escherichia coli. J. Biomed. Nanotechnol. 9: 69–76.
[61] Khatri P., Jamdagni P., Sindhu A., Rana J. S., (2016), Antimicrobial potential of important medicinal plants of India. Int. J. Microb. Res. Technol. 3: 301-308.