[1] Rajeshkannan R., (2011), Decolourization of malachite green-optimization, isotherm and kinetic
studies. Chem. Ind. Chem. Eng. 17: 67–79.
[2] Ali I., Al-Othman Z. A., Alwarthan A., (2016), Molecular uptake of congo red dye from water
on iron composite nano particles. J. Mol. Liq. 224: 171–176.
[3] Khan T. A., Sharma S., Ali I., (2011), Adsorption of rhodamine B dye from aqueous solution
onto acid activated mango (Mangifera indica) leaf powder: Equilibrium, kinetic and
thermodynamic studies. J. Toxicol. Environ. Health. 3: 286–297.
[4] Ali I.,GuptaV. K., (2006), Advances in water treatment by adsorption technology. Nat. Protoc. 1: 2661-2667.
[5] Culp S. J., (2002), Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutat. Res. 506–507: 55–63.
[6] Chandran D., (2016), A review of the textile industries waste water treatment methodologies. Int. J. Sci. Eng. Res. 7: 2229–5518.
[7] Ali I., (2012), New generation adsorbents for water treatment. Chem. Rev. 112: 5073–5091.
[8] Ali I., Asim M., Khan T. A., (2017), Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposites adsorbent. Arab. J. Chem. 10: 2388–2398.
[9] Ali I., (2014), Water treatment by adsorption columns: Evaluation at ground level. Sep. Purif. Rev. 43: 175–205.
[10] Khan T. A., Nazir M., Ali I., Kumar A, (2017), Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab. J. Chem. 10: 2388-2398.
[11] Cui W, Shao M, Liu L, liang Y, Rana L., (2013), Enhanced visible-light-responsive photocatalytic property of PbS-sensitized K4Nb6O17 nanocomposite photocatalysts. Appl. Surf. Sci. 276: 823–831.
[12] Balaji Anjaneyulu R., Sathish Mohan B., Parasuram Naidu G., Muralikrishna R., (2018), Visible light enhanced photocatalytic degradation of Methylene blue by ternary nanocomposite. MoO3/Fe2O3/rGO. J. Asian Ceram. Soc. 6:183-195.
[13] Balu S., Uma K., Pan G. T., Thomas C.-K., Yang T. C. K., Ramaraj S. K., (2018), Degradation of Methylene Blue dye in the presence of visible light using SiO2@α-Fe2O3 nanocomposites deposited on SnS2 flowers. Materials. 11: 1030-1036.
[14] Armstrong A. R., Bruce P. G., (1996), Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature. 381: 499-500.
[15] Mohan G. R., Ravinder D., Ramana Reddy A. V., Boyanov B. S., (1999), Dielectric properties of polycrystalline mixed nickel-zinc ferrites. Mater. Lett. 40: 39–45.
[16] Buckelew A., Gal´an-Mascar J. R., Dunbar K. R., (2002), Facile conversion of the face- centered cubic prussian-blue material K2[Mn2(CN)6] into the spinel oxide Mn3O4 at the solid/water interface. Adv. Mater. 14: 1646-1648.
[17] Myung S. T., Komaba S., Kumagai N., (2002), Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2. Electrochim. Acta. 47: 3287–3295.
[18] Grootendorst E. J., Verbeek Y., Ponec V., (1995), The role of the mars and van krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts. J. Catal. 157: 706–712.
[19] Stobbe E. R., De Boer B. A., Geus J. W., (1999), The reduction and oxidation behaviour of manganese oxides. Catal. Today. 47: 161–167.
[20] Kijlstra W., Daamen J., Vandegraaf J., Vanderlinden B., Poels E., Bliek A., (1996), Inhibiting an deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Appl. Catal. B: Environ. 7: 337–357.
[21] Mendelovici E., Sagarzazu A., (1988), Thermal synthesis of hausmanite via manganese Alkoxide.
Thermochim. Acta. 133: 93–100.
[22] Finocchio E., Busca G., (2001), Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3. Catal. Today. 70: 213–225.
[23] Demazeau G., (1999), Solvothermal processes: A route to the stabilization of new Materials. J. Mater. Chem. 9: 15–18.
[24] Yang L. X., Zhu Y. J., Tong H., Wang W. W., Cheng G. F., (2006), Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magneticstudy. J. Solid State Chem. 179: 1225–1229.
[25] Salavati-Niasari M., Davar F., Mazaheri M., (2008), Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato) manganese (II)] complex. Polyhedron. 27: 3467-3471.
[26] Chang Y. Q.,Yu D. P., Long Y., Xu J., Luo R., Ye C., (2005), Large-scale fabrication of single-crystalline Mn3O4 nanowires via vapor phase growth. J. Crystal Growth. 279: 88–92.
[27] Du J., Gao Y., Chai L., Zou G., Li Y., Qian Y., (2006), Hausmannite Mn3O4 nanorods: Synthesis, characterization and magnetic properties. Nanotechnol. 17: 4923–4928.
[28] Gopalakrishnan I. K., Bagkar N., Ganguly R., Kulshreshtha S. K., (2005), Synthesis of super paramagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J. Crystal Growth. 280: 436–441.
[29] Hu Y., Chen J., Xue X., Li T., (2006), Synthesis of monodispersed single-crystal compass-shaped Mn3O4 viagamma-rayirradiation. Mater. Lett. 60: 383–385.
[30] Ozkaya T., (2008), Master thesis, Fatih University, Istanbul, Turkey.
[31] Sharanya V. K., Gayathiri K., Sangeetha M., Shyam P. G., Gopi S. K., Vimalavathini R., Kavimani S., (2016), A pharmacological review on simarouba glauca DC. Int. J. Pharma. Res. Rev. 5: 32-36.
[32] Ghahi A., (1990), Introduction to pharmacognosy, Ahmadu Bello University press, Ltd.Zaria, Nigeria, 45-47.
[33] Patil M. S., Gaikwad D. K., (2011), A critical review on medicinally important oil yielding plant Laxmitaru (Simarouba glauca DC.). J. Pharm. Sci. Res. 3: 1195-1213.
[34] Sugimogo M., (1999), Past, present & future of ferrites. J. Am. Ceram. Soc. 82: 269–280.
[35] Fritsch A. S., Sarrias J., Rousset A., Kulkarni G. U., (1998), Low-temperature oxidation of Mn3O4 hausmannite. Mat. Res. Bull. 33: 1185–1194.
[36] Ozkaya T., Baykal A., Kavas H., Koseglu Y., Topark M. S., (2008), A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation. Physica B. 403: 3760-3764.
[37] Santra S., Tapec R., Theodoropoulou N., Dobson J., Hebard A., Tan W., (2001), Synthesis and characterization of silica-coated Iron Oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir. 17: 2900-2906.
[38] Patil K. C, Aruna S., Mimani T., (2002), Combustion synthesis: An update. Current Opin. Solid State Mater. Sci. 6: 507-512.
[39] Ananth M. V., Pethkar S., Dakshinamurthi K., (1998), Distortion of MnO6 octahedra and electrochemical activity of Nstutite-based MnO2 polymorphs for alkaline electrolytes an FTIR study. J. Power Sources. 75: 278-282.
[40] Brabers V. A. M., (1969), Infrared spectra of cubic and tetragonal manganese ferrites. Phys. Status Solidi. 33: 563-572.
[41] Durmu S., Kavas Z., Baykal H., Toprak A., (2009), A green chemical route for the synthesis of Mn3O4 nanoparticles. Cent. Eur. J. Chem. 7: 555-559.
[42] Durmus Z., Tomas M., Baykal A., Kavas H., Altınçekiç T. G., Toprak M. S., (2010), The effect of neutralizing agent on the synthesis and characterization of Mn3O4 nanoparticles. Russ. J. Inorg. Chem. 55: 1947-1952.
[43] Boyero Macstre J., Fernandez Lopez E., Gallardo-Amores J. M., Ruano Casero R., (2001), Influence of the synthesis parameters on the structural and textural properties of precipitated manganese oxide. Int. J. Inorg. Mater. 3: 889-899.
[44] Dubal D. P., Dhawale D. S., Pawar S. M., (2010), A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl. Surf. Sci. 256: 4411-4416.
[45] Rejani P., Radhakrishnan A., Beena B., (2014), Photo catalytic decomposition of malachite green in aqueous solutions under UV irradiation using nano ZnO Rod. Iranica J. Energy Envir. 5: 233-239.
[46] Radhakrishnan A., Padmavathi R., Beena B., (2018), CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation. Int. J. Nano Dimens. 9: 145-157.
[47] Cui W., Guo D., Liu L., Hu J., Ranab D., Liang Y., (2014), Preparation of ZnIn2S4/K2La2Ti3O10 composites and their photocatalytic H2 evolution from aqueous Na2S/Na2SO3 under visible light irradiation. Catal. Commun. 48: 55–59.
[48] Cui W., Qia Y., Li Liu L., Ranab D., Hu J., Liang Y., (2012), Synthesis of PbS–K2La2Ti3O10 composite and its photocatalytic activity for hydrogen production. Prog. Nat. Sci: Mater. Int. 22: 120–125.
[49] Wager C., Riggs W., Davia L., Moulder J., Muilenber G., (1979), Handbook of X-ray photoelectron spectroscopy, Perkin Elmer Corporation physical electronic division, waltham, MA.
[50] Wang W., Ao L., (2008), Synthesis and optical properties of Mn3O4 nanowires by decomposing MnCO3 nanoparticles in flux. Crys. Growth and Design. 8: 358-362.
[51] Davar F., Salavati-Niasari M., Mir N., Saberyan K., Monemzadeh M., Ahmadi E., (2010), Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel Precursor. Polyhedron. 29: 1747–1753.
[52] Salavati-Niasari M., Davar F., Mazaheri M., (2008), Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis (salicylidiminato)manganese(II)] complex. Polyhedron. 27: 3467–3471.
[53] Ameta K. L., Neema P., Rakshit A., (2014), Synthesis, characterisation and use of novel bimetal oxide catalyst for photoassissted degradation of Malachite green dye. J. Mater. 2014: 1-5.
[54] Ranjith R., Krishnakumar V., Venkatesan J., Boobas S., Jayaprakash J., (2018), Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6–CdS nanocomposite film under visible light irradiation. Appl. Nanosc. 8: 61–78.
[55] Zhigang X., Li Zh., Jizhen M., Zhao X. S., (2010), Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem. Commun. 46: 6099–6101.