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Abstract
In the present work, the exact diagonalization method had been implemented to calculate the ground 
state energy of shallow donor impurity located at finite distance along the growth axis in GaAs/AlGaAs 
heterostructure in the presence of a magnetic field taken to be along z direction. The impurity binding 
energy of the ground state had been calculated as a function of confining frequency and magnetic field 
strength. We found that the ground state donor binding energy (BE) calculated at cω =2 *R  and *

0 5.421Rω =  
, decreases from BE=7.59822 *R  to BE=2.85165 *R , as we change the impurity position from d=0.0 *a  to 
d=0.5 *a  , respectively .In addition, the combined effects of pressure and temperature on the binding energy, 
as a function of magnetic field strength and impurity position, had been shown using the effective-mass 
approximation. The numerical results show that the donor impurity binding energy enhances with increasing 
the pressure while it decreases as the temperature decreases.
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INTRODUCTION
Low dimensional heterostructure have been 

studied intensively in the last decades, both 
theoretically and experimentally [1-3]. Quantum 
confined semiconductor systems such as quantum 
well (QW), quantum well wire (QWW), quantum 
dots (QD) and quantum rings (QR) are important 
elements in the present electronic devices. The 
electrical, optical and transport properties of these 
semiconductor heterostructure systems can be 
changed by external effects like: donor impurities 
near the heterostructure surface, electric field, 
magnetic field, pressure, and temperature [3,4]. 
Moreover, the effect of the donor impurity on the 
properties of the heterostructure materials is very 
interesting subject which has been investigated. 
Adding the donor impurity atoms change the 
effective charge and mass of it, which alter the 
performance of the quantum devices and the 
transport properties [5]. The binding energy 

of the impurity and the coulombic interaction 
between the system charge carrier and the donor 
impurity change the heterostructure energy gap 
[6, 7]. The donor impurity binding energy had 
been investigated from bulk to the quantum dot 
where it depends on the dimensionality of the 
system, shape, and the impurity position [1, 8, 9]. 
Also, it is affected the heterostructure properties 
by the presence of the magnetic or electrical 
fields, pressure, and temperature [9, 10]. For the 
quantum dot, the donor impurity binding energy 
increases continuously with decreasing the dot 
radius, and the applied magnetic field strength, in 
addition, it depends on the impurity position [11, 
12]. 

The donor binding energy had been studied 
for the quantum well by using variation method, 
where the ground state of donor binding energy 
had been computed as a function of the impurity 
position and the QW width under different electric 
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field strengths [13, 14].  The donor impurity 
energy for the ground and excited state of two-
dimensional heterostructure had been computed 
as a function of magnetic field strength, for both 
weak and strong magnetic field limit, using exact 
and perturbation methods [15]. Chuu et al. in Ref. 
[16] obtained the donor impurity energy levels 
analytically for both donor impurity located at 
the quantum dots center, and for donor impurity 
located at the axis of the quantum-well wire. Zhu 
and Gu in Ref. [17] investigated the dependence 
of the energy transition on shallow donor impurity 
states in a harmonic QD by using analytical 
method with the presence of the magnetic field. 
The energy transition changes with the magnetic 
field strength, where the result shows the high 
effects of magnetic fields on donor impurity 
energy states transition [17]. The dependence of 
the diamagnetic susceptibility and the binding 
energy of the donor impurity on the pressure and 
the temperature had been shown analytically.  
Khordad and Fathizadeh found in their recent 
study the diamagnetic susceptibility increases 
by increasing the pressure and it decreases with 
increasing the temperature [18]. Peter in Ref. [19] 
reported the binding energy levels of shallow 
hydrogenic impurities in a parabolic quantum dot 
(QD)with pressure effect using variation approach. 
Where, they are found that the ionization energy, 
is purely pressure-dependent. Merchancano et al. 
in Ref. [2] had also calculated the binding energy of 
the hydrogenic impurities in a spherical QD using 
the variation and perturbation approaches as a 
function of pressure, QD size, and the impurity 
position. The results of the study show that the 
binding energy increases with increasing the 
pressure [20]. The combined effects of pressure 
and temperature on the binding energy of donor 
impurity in a spherical QD with the presence of 
the electric field or without had been investigated 
[5, 21].

 The exact diagonalization method had been 
used to solve the problem of two interacting 
electrons in the QD including the pressure and 
temperature effects. The magnetization and 
magnetic susceptibility of confined electrons 
in parabolic quantum dot was considered in 
both: experimental and theoretical studies 
[22, 23]. Very recently, Elsaid et al. [24-32], has 
studied the electronic, thermodynamic and 
magnetic properties of two electrons confined 
in a single quantum and coupled quantum dots 

(CQD). Alfonso et al. in [33] had investigated the 
energy states of an electron confined in a two-
dimensional (2D) plane and bound to an off-
plane shallow donor center in the presences of 
an external magnetic field by using variation and 
numerical approaches. The effect of impurity on 
energy levels in double quantum rings had been 
considered by Khajeh Salehani  et al. [34].

In this work, we have investigated the combined 
effects of pressure, temperature, magnetic field 
strength and the impurity position on the ground 
state binding energy of the donor impurity in 
heterostructure materials. We have computed 
the ground state energy level of donor impurity 
in a heterostructure by solving the donor impurity 
Hamiltonian using exact diagonalization method.  
The Hamiltonian theory of donor impurity 
located along the growth axis under the effect of 
a magnetic field, pressure and temperature had 
been presented, followed by numerical results 
and discussion. The conclusion is given at the end 
of the work.

THEORY
This section describes the main parts of the 

donor impurity formulation: i) the quantum 
heterostructure Hamiltonian, ii) the exact 
diagonalization method and iii) the pressure and 
temperature effects on the computed donor 
impurity ground state binding energy by the 
effective-mass approximation. The system is a 
quantum heterostructure confined in the x-y plane 
with parabolic confinement potential of confining 
strength 0ω  , ( ) * 2 2

0
1
2

V r m rω=  , and  in the presence 
of a donor impurity along the z- axis located 
at distance d, under the influence of a uniform  

magnetic field  strength, B=∇×A , applied along the 

z -direction. A= ( ) , ,0
2
B y x−  is the vector potential. 

The interaction between the electron in the 
GaAs layer and the donor impurity, located at 
distance d along the z-direction in AlGaAs barrier, 
is attractive coulomb interaction energy. The 
Hamiltonian of the donor impurity can be written 
in an operator form as:
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Ĥ   in Eq. (1) can be separated into two parts as:
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Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
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Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
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Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 
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0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 
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Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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impurity Hamiltonian;  �𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�Ĥ�𝑅𝑅𝑅𝑅�́�𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�, can be diagonalized numerically to 

obtain the desired eigenenergies. In each calculation step the number of basis |n, m > 

will be varied until a satisfied converging eigen energies are achieved. The stability 

converging procedure is displayed in Fig.1. 

The donor impurity binding energy (BE) which is defined as the difference between the 

energy states of the Hamiltonian (Eq. 1) without the presence of the impurity (E) and 

with its presence (E0). 

                               𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸0                                                   (9) 
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𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) 𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌2

−  
𝑒𝑒𝑒𝑒2

𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)�𝜌𝜌𝜌𝜌2 + 𝑑𝑑𝑑𝑑2
                                 (10) 

For quantum heterostructure made of GaAs the dielectric constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) and the 

electron effective mass  𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) are presented by [10]  

∈𝑟𝑟𝑟𝑟 (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)

= �12.74 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[9.4 × 10−5(𝑇𝑇𝑇𝑇 − 75.6)] for T < 200 K
13.18 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[20.4 × 10−5(𝑇𝑇𝑇𝑇 − 300)] forT ≥ 200 K

             (11) 

𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1 + 7.51�
2

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) +
1

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) + 0.341
��

−1

𝑚𝑚𝑚𝑚0                             (12) 

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1.519 − 5.405 × 10−4
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                                                 (10) 

 For quantum heterostructure made of GaAs the 
dielectric constant 

٧ 
 

 Using these harmonic oscillator bases |n, m >  , the matrix elements of the full donor 

impurity Hamiltonian;  �𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�Ĥ�𝑅𝑅𝑅𝑅�́�𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�, can be diagonalized numerically to 

obtain the desired eigenenergies. In each calculation step the number of basis |n, m > 

will be varied until a satisfied converging eigen energies are achieved. The stability 

converging procedure is displayed in Fig.1. 

The donor impurity binding energy (BE) which is defined as the difference between the 

energy states of the Hamiltonian (Eq. 1) without the presence of the impurity (E) and 

with its presence (E0). 

                               𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸0                                                   (9) 

 

The effects of the pressure (P) and the temperature (T) on the energy of the 

ground state can be investigated using effective mass approximation method                 

(EMA). The pressure and temperature dependence of the material electron effective 

mass, 𝑚𝑚𝑚𝑚∗( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇)  and dielectric constant 𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇 )  are inserted in the impurity 

Hamiltonian as shown below 

Ĥ(𝜌𝜌𝜌𝜌) =
1

2𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) �𝑝𝑝𝑝𝑝
(𝜌𝜌𝜌𝜌) +

𝑒𝑒𝑒𝑒
𝑐𝑐𝑐𝑐
𝐴𝐴𝐴𝐴(𝜌𝜌𝜌𝜌)�

2
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1
2
𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) 𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌2

−  
𝑒𝑒𝑒𝑒2

𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)�𝜌𝜌𝜌𝜌2 + 𝑑𝑑𝑑𝑑2
                                 (10) 

For quantum heterostructure made of GaAs the dielectric constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) and the 

electron effective mass  𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) are presented by [10]  

∈𝑟𝑟𝑟𝑟 (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)

= �12.74 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[9.4 × 10−5(𝑇𝑇𝑇𝑇 − 75.6)] for T < 200 K
13.18 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[20.4 × 10−5(𝑇𝑇𝑇𝑇 − 300)] forT ≥ 200 K

             (11) 

𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1 + 7.51�
2

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) +
1

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) + 0.341
��

−1

𝑚𝑚𝑚𝑚0                             (12) 

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1.519 − 5.405 × 10−4
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 and the electron 
effective mass  

٧ 
 

 Using these harmonic oscillator bases |n, m >  , the matrix elements of the full donor 

impurity Hamiltonian;  �𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�Ĥ�𝑅𝑅𝑅𝑅�́�𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�, can be diagonalized numerically to 

obtain the desired eigenenergies. In each calculation step the number of basis |n, m > 

will be varied until a satisfied converging eigen energies are achieved. The stability 

converging procedure is displayed in Fig.1. 

The donor impurity binding energy (BE) which is defined as the difference between the 

energy states of the Hamiltonian (Eq. 1) without the presence of the impurity (E) and 

with its presence (E0). 

                               𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸0                                                   (9) 

 

The effects of the pressure (P) and the temperature (T) on the energy of the 

ground state can be investigated using effective mass approximation method                 

(EMA). The pressure and temperature dependence of the material electron effective 

mass, 𝑚𝑚𝑚𝑚∗( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇)  and dielectric constant 𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇 )  are inserted in the impurity 

Hamiltonian as shown below 

Ĥ(𝜌𝜌𝜌𝜌) =
1

2𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) �𝑝𝑝𝑝𝑝
(𝜌𝜌𝜌𝜌) +

𝑒𝑒𝑒𝑒
𝑐𝑐𝑐𝑐
𝐴𝐴𝐴𝐴(𝜌𝜌𝜌𝜌)�

2
 +

1
2
𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) 𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌2

−  
𝑒𝑒𝑒𝑒2

𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)�𝜌𝜌𝜌𝜌2 + 𝑑𝑑𝑑𝑑2
                                 (10) 

For quantum heterostructure made of GaAs the dielectric constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) and the 

electron effective mass  𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) are presented by [10]  

∈𝑟𝑟𝑟𝑟 (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)

= �12.74 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[9.4 × 10−5(𝑇𝑇𝑇𝑇 − 75.6)] for T < 200 K
13.18 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[20.4 × 10−5(𝑇𝑇𝑇𝑇 − 300)] forT ≥ 200 K

             (11) 

𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1 + 7.51�
2

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) +
1

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) + 0.341
��

−1

𝑚𝑚𝑚𝑚0                             (12) 

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1.519 − 5.405 × 10−4
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 are presented by [10] 

٧ 
 

 Using these harmonic oscillator bases |n, m >  , the matrix elements of the full donor 

impurity Hamiltonian;  �𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�Ĥ�𝑅𝑅𝑅𝑅�́�𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�, can be diagonalized numerically to 

obtain the desired eigenenergies. In each calculation step the number of basis |n, m > 

will be varied until a satisfied converging eigen energies are achieved. The stability 

converging procedure is displayed in Fig.1. 

The donor impurity binding energy (BE) which is defined as the difference between the 

energy states of the Hamiltonian (Eq. 1) without the presence of the impurity (E) and 

with its presence (E0). 

                               𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸0                                                   (9) 

 

The effects of the pressure (P) and the temperature (T) on the energy of the 

ground state can be investigated using effective mass approximation method                 

(EMA). The pressure and temperature dependence of the material electron effective 

mass, 𝑚𝑚𝑚𝑚∗( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇)  and dielectric constant 𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇 )  are inserted in the impurity 

Hamiltonian as shown below 

Ĥ(𝜌𝜌𝜌𝜌) =
1

2𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) �𝑝𝑝𝑝𝑝
(𝜌𝜌𝜌𝜌) +

𝑒𝑒𝑒𝑒
𝑐𝑐𝑐𝑐
𝐴𝐴𝐴𝐴(𝜌𝜌𝜌𝜌)�

2
 +

1
2
𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) 𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌2

−  
𝑒𝑒𝑒𝑒2

𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)�𝜌𝜌𝜌𝜌2 + 𝑑𝑑𝑑𝑑2
                                 (10) 

For quantum heterostructure made of GaAs the dielectric constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) and the 

electron effective mass  𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) are presented by [10]  

∈𝑟𝑟𝑟𝑟 (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)

= �12.74 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[9.4 × 10−5(𝑇𝑇𝑇𝑇 − 75.6)] for T < 200 K
13.18 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[20.4 × 10−5(𝑇𝑇𝑇𝑇 − 300)] forT ≥ 200 K

             (11) 

𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1 + 7.51�
2

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) +
1

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) + 0.341
��
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𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1.519 − 5.405 × 10−4
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        (11)
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 Using these harmonic oscillator bases |n, m >  , the matrix elements of the full donor 

impurity Hamiltonian;  �𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�Ĥ�𝑅𝑅𝑅𝑅�́�𝑛𝑛𝑛,𝑚𝑚𝑚𝑚(𝜌𝜌𝜌𝜌)�, can be diagonalized numerically to 

obtain the desired eigenenergies. In each calculation step the number of basis |n, m > 

will be varied until a satisfied converging eigen energies are achieved. The stability 

converging procedure is displayed in Fig.1. 

The donor impurity binding energy (BE) which is defined as the difference between the 

energy states of the Hamiltonian (Eq. 1) without the presence of the impurity (E) and 

with its presence (E0). 

                               𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸0                                                   (9) 

 

The effects of the pressure (P) and the temperature (T) on the energy of the 

ground state can be investigated using effective mass approximation method                 

(EMA). The pressure and temperature dependence of the material electron effective 

mass, 𝑚𝑚𝑚𝑚∗( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇)  and dielectric constant 𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟( 𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑇𝑇 )  are inserted in the impurity 

Hamiltonian as shown below 

Ĥ(𝜌𝜌𝜌𝜌) =
1

2𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) �𝑝𝑝𝑝𝑝
(𝜌𝜌𝜌𝜌) +

𝑒𝑒𝑒𝑒
𝑐𝑐𝑐𝑐
𝐴𝐴𝐴𝐴(𝜌𝜌𝜌𝜌)�

2
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2
𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) 𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌2

−  
𝑒𝑒𝑒𝑒2

𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)�𝜌𝜌𝜌𝜌2 + 𝑑𝑑𝑑𝑑2
                                 (10) 

For quantum heterostructure made of GaAs the dielectric constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) and the 

electron effective mass  𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) are presented by [10]  

∈𝑟𝑟𝑟𝑟 (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)

= �12.74 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[9.4 × 10−5(𝑇𝑇𝑇𝑇 − 75.6)] for T < 200 K
13.18 exp(−1.73 × 10−3𝑃𝑃𝑃𝑃) exp[20.4 × 10−5(𝑇𝑇𝑇𝑇 − 300)] forT ≥ 200 K

             (11) 

𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1 + 7.51�
2

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) +
1

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) + 0.341
��

−1
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𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔г(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) = �1.519 − 5.405 × 10−4
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located along z axis at the distance d, with the presence of a uniform external magnetic 

field (B) along the z direction. In the first step we have calculated the ground state 

eigenenergy (where m=0) for the donor impurity of GaAs/AlGaAs heterostructure as a 
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magnetic field strength cω  with impurity located 
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3.044 R∗. The accuracy of our obtained results are tested against the corresponding ones 

produced by  𝟏𝟏𝟏𝟏
𝑵𝑵𝑵𝑵

 expansion method [35] .Table 2 shows the comparison between the 

ground state (m=0) computed energy for the present exact diagonalization method and 

the available corresponding energy produced by 𝟏𝟏𝟏𝟏
𝑵𝑵𝑵𝑵

 expansion method. The comparison 

shows a good agreement between both methods. To test the convergence issue of our 

exact diagonalization technique, we have plotted in Fig.1a ,1b, the computed ground 

state energies (E) of the donor impurity Hamiltonian against the number of basis (n) 

from 1 to 38 for frequency ωo =  5.412 𝑅𝑅𝑅𝑅∗ , impurity distance d= 0𝑎𝑎𝑎𝑎∗   and 0.5𝑎𝑎𝑎𝑎∗   , and 

at magnetic field strength ωc = 2 𝑅𝑅𝑅𝑅∗. The figures clearly show the numerical stability in 

our computed scheme. The ground state approaches a limiting value as the number of 

basis increases.  

Fig.2 displays the energy of the donor impurity energy as a function of the magnetic 

field strength  ωc , for confinement frequency ω0 = 5.412R∗ . The solid plot of the 

system indicates the absence of the impurity, and the dashed one indicates the presence 

of the impurity. It is clear from Fig. 2 that the effect of the impurity is to decrease the 

energy of the system. The presence of donor impurity lowers the energy of the 

heterostructure energy due to it negative coulomb attraction. 

The energy of the heterostructure shows a significant dependence on the impurity 

position. Increasing the impurity distance (d), changing the system from 2D to 3D 

(bulk), as displayed clearly in Fig.3.  For fixed values of impurity position (d), the 
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Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 
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ground -state eigenenergy (E) and the binding 
energy (BE) against the magnetic field strength
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function of the magnetic field strength 𝜔𝜔𝜔𝜔𝑐𝑐𝑐𝑐 with impurity located at the origin (d=0) for 

two specific values of the confinement frequency strength   ω0 = 5.412 𝑅𝑅𝑅𝑅∗, and ω0 =

3.044 R∗. The accuracy of our obtained results are tested against the corresponding ones 

produced by  𝟏𝟏𝟏𝟏
𝑵𝑵𝑵𝑵

 expansion method [35] .Table 2 shows the comparison between the 

ground state (m=0) computed energy for the present exact diagonalization method and 

the available corresponding energy produced by 𝟏𝟏𝟏𝟏
𝑵𝑵𝑵𝑵

 expansion method. The comparison 

shows a good agreement between both methods. To test the convergence issue of our 

exact diagonalization technique, we have plotted in Fig.1a ,1b, the computed ground 

state energies (E) of the donor impurity Hamiltonian against the number of basis (n) 

from 1 to 38 for frequency ωo =  5.412 𝑅𝑅𝑅𝑅∗ , impurity distance d= 0𝑎𝑎𝑎𝑎∗   and 0.5𝑎𝑎𝑎𝑎∗   , and 

at magnetic field strength ωc = 2 𝑅𝑅𝑅𝑅∗. The figures clearly show the numerical stability in 

our computed scheme. The ground state approaches a limiting value as the number of 

basis increases.  

Fig.2 displays the energy of the donor impurity energy as a function of the magnetic 

field strength  ωc , for confinement frequency ω0 = 5.412R∗ . The solid plot of the 

system indicates the absence of the impurity, and the dashed one indicates the presence 

of the impurity. It is clear from Fig. 2 that the effect of the impurity is to decrease the 

energy of the system. The presence of donor impurity lowers the energy of the 

heterostructure energy due to it negative coulomb attraction. 

The energy of the heterostructure shows a significant dependence on the impurity 

position. Increasing the impurity distance (d), changing the system from 2D to 3D 

(bulk), as displayed clearly in Fig.3.  For fixed values of impurity position (d), the 

, for specific values of 
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produced by  𝟏𝟏𝟏𝟏
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 expansion method [35] .Table 2 shows the comparison between the 
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the available corresponding energy produced by 𝟏𝟏𝟏𝟏
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 expansion method. The comparison 

shows a good agreement between both methods. To test the convergence issue of our 
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state energies (E) of the donor impurity Hamiltonian against the number of basis (n) 
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at magnetic field strength ωc = 2 𝑅𝑅𝑅𝑅∗. The figures clearly show the numerical stability in 

our computed scheme. The ground state approaches a limiting value as the number of 

basis increases.  

Fig.2 displays the energy of the donor impurity energy as a function of the magnetic 

field strength  ωc , for confinement frequency ω0 = 5.412R∗ . The solid plot of the 

system indicates the absence of the impurity, and the dashed one indicates the presence 

of the impurity. It is clear from Fig. 2 that the effect of the impurity is to decrease the 

energy of the system. The presence of donor impurity lowers the energy of the 

heterostructure energy due to it negative coulomb attraction. 

The energy of the heterostructure shows a significant dependence on the impurity 

position. Increasing the impurity distance (d), changing the system from 2D to 3D 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 
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(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 and 
for various values of d. For 

١٠ 
 

energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 and d=0 
a*, the binding energy increases as the magnetic 
field strength increases. This behavior persists 
for all d-values. However, the binding energy 
decreases as the impurity (d) increases. We can 
see a significant decrease in the binding energy as 
d increases from d=0.1 a* to d=0.5 a*. For example, 
at 

١٠ 
 

energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 and 

١٠ 
 

energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 the binding energy 
reduces significantly from 4.62499 R* to 2.55177 
R*. This result is due to the great reduction in the 
coulomb impurity energy (Eq. 4), as we mentioned 
earlier. The same qualitative behavior can also be 
observed in Table 4 with different quantitative 
behavior for 

١٠ 
 

energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

.
To see the effects of pressure and temperature 

parameters on the binding energy of the donor 

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  

٧ 
 

 
Fig.7.a 

 
Fig.7.b 

 
Figure 7 



384

S.  Abuzaid et al.

Int. J. Nano Dimens., 10 (4): 375-390, Autumn 2019

impurity, we have inserted the pressure and 
temperature dependent material parameters 
of GaAs , ( ( ) ( )* ,    ,  ) m P T and P T∈  , in the present  
calculations. In Fig. 5 to Fig. 16 , we have shown 
explicitly the behavior of the donor binding energy 
(BE) as a function of the magnetic field strength 
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to Fig.16 , we have shown explicitly the behavior of the donor binding energy (BE) as a 
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d=0 𝑎𝑎𝑎𝑎∗  and confinement frequency ω0 = 3.044 R∗ . For fixed temperature, the figure 

clearly shows the enhancement of the binding energy as the magnetic field strength 

ωc increases. This enhancement in the donor binding energy can be attributed to the 
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4
ω2ρ2  in Eq. (3). For fixed values of magnetic 

field strength ωc , the binding energy decreases when the temperature increases, as 

clearly shown in Fig.5a. Similar behavior of the donor binding energy is displayed in 

Fig.5b for different, ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

 In Fig.6 we have shown the dependence of the donor binding energy on the 
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constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)  on the temperature and pressure explain in Table 1, where m* 

decreases and  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 increases with increasing T which diminish donor impurity binding 

energy (BE) .  

In Fig.7a ,7b, the behavior of the donor binding energy had been shown as a function of 
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strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 
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ωc increases. This enhancement in the donor binding energy can be attributed to the 
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decreases and  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 increases with increasing T which diminish donor impurity binding 

energy (BE) .  

In Fig.7a ,7b, the behavior of the donor binding energy had been shown as a function of 

the magnetic field strength  ωc ,   for different values of parameters : ω0 =

 
on the temperature 

and pressure explain in Table 1, where m* decreases 
and
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parameters of GaAs , ( 𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) )  , in the present  calculations. In Fig. 5 

to Fig.16 , we have shown explicitly the behavior of the donor binding energy (BE) as a 

function of the magnetic field strength  ωc  , taking in consideration the impurity 

position (d), temperature (T), pressure (P) and confinement frequency  ω0 . Fig. 5a, 5b 

show the donor binding energies against the magnetic field strength for three different 

temperatures (5K, 100K, and 200K) and fixed values of pressure, impurity position 

d=0 𝑎𝑎𝑎𝑎∗  and confinement frequency ω0 = 3.044 R∗ . For fixed temperature, the figure 

clearly shows the enhancement of the binding energy as the magnetic field strength 

ωc increases. This enhancement in the donor binding energy can be attributed to the 

parabolic magnetic confinement term  1
4
ω2ρ2  in Eq. (3). For fixed values of magnetic 

field strength ωc , the binding energy decreases when the temperature increases, as 

clearly shown in Fig.5a. Similar behavior of the donor binding energy is displayed in 

Fig.5b for different, ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

 In Fig.6 we have shown the dependence of the donor binding energy on the 

temperature for fixed values of pressure (P=10 Kbar),  ωc = 2 𝑅𝑅𝑅𝑅∗  ,  𝑛𝑛𝑛𝑛 = 0 𝑎𝑎𝑎𝑎∗  and 

various confinements ( ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and ω0 = 5.412 R∗). The binding energy again 

shows a clear decreasing behavior as the temperature of the system increases. The 

dependence of the material parameters like the effective mass m*(P,T) and dielectric 

constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)  on the temperature and pressure explain in Table 1, where m* 

decreases and  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 increases with increasing T which diminish donor impurity binding 

energy (BE) .  

In Fig.7a ,7b, the behavior of the donor binding energy had been shown as a function of 

the magnetic field strength  ωc ,   for different values of parameters : ω0 =

 increases with increasing T which diminish 
donor impurity binding energy (BE) . 

In Fig.7a ,7b, the behavior of the donor binding 
energy had been shown as a function of the 
magnetic field strength
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 for different values 
of parameters: 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 + 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

, 
pressure  P=0, 10, and 20 kbar, impurity position 
d=0 *a , and temperature T=20 K. The donor 
binding energy shows a significant increase as 
the magnetic field 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 increases; as we increase 
the magnetic field strength cω ,  the electron-
atom separation distance decrease which in turn 
increases the electron confinement. The binding 
energy again shows a great enhancement as the 
pressure increases, while keeping the magnetic 
field strength unchanged.

In Fig. 8, we take the temperature T=20K, 
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5.412 𝑅𝑅𝑅𝑅∗  and ω0 = 3.044 R∗  , pressure  P=0, 10, and 20 kbar, impurity position 

d=0𝑎𝑎𝑎𝑎∗, and temperature T=20 K. The donor binding energy shows a significant increase 

as the magnetic field  ωc  increases; as we increase the magnetic field strength 𝜔𝜔𝜔𝜔𝑐𝑐𝑐𝑐 , the 

electron-atom separation distance decrease which in turn increases the electron 

confinement. The binding energy again shows a great enhancement as the pressure 

increases, while keeping the magnetic field strength unchanged. 

In Fig.8, we take the temperature T=20K,  ωc = 2𝑅𝑅𝑅𝑅∗ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑛𝑛𝑛𝑛 = 0 𝑎𝑎𝑎𝑎∗  parameters, while 

changing the pressure. We observe a great enhancement in the donor binding energy as 

the pressure increases for confinement strength: ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and ω0 = 5.412 R∗ . 

This behavior is expected; since as we increase the pressure, the effective mass m* 

increases while the dielectric constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟  decreases. These changes in the material 

parameters lead to a reduction in the kinetic energy of the electron while the attractive 

coulomb energy of the electron enhances.  

In Fig.9a and 9b, we have shown the effect of changing the temperature, at fixed value 

of the impurity position (d= 0.1 a*), on the binding energy. Again, the binding energy 

shows great enhancement as we increase the magnetic field strength ωc for fixed values 

of the parameters: Temperature (T= 5, 100, and 200K), Pressure (P=10 kbar) and 

confinement frequencies  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and ω0 = 5.412 R∗. We display in figure 10 

the donor binding energy against the temperature (T), while the rest of the physical 

parameters of the system are kept fixed. The binding energy shows an important 

dependence on the temperature, and the impurity binding energy EB decreases with 

increasing the temperature.   

 parameters, while changing 
the pressure. We observe a great enhancement 
in the donor binding energy as the pressure 
increases for confinement strength: 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 
and 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

. This behavior is expected; 
since as we increase the pressure, the effective 
mass m* increases while the dielectric constant 
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parameters of GaAs , ( 𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) )  , in the present  calculations. In Fig. 5 

to Fig.16 , we have shown explicitly the behavior of the donor binding energy (BE) as a 

function of the magnetic field strength  ωc  , taking in consideration the impurity 

position (d), temperature (T), pressure (P) and confinement frequency  ω0 . Fig. 5a, 5b 

show the donor binding energies against the magnetic field strength for three different 

temperatures (5K, 100K, and 200K) and fixed values of pressure, impurity position 

d=0 𝑎𝑎𝑎𝑎∗  and confinement frequency ω0 = 3.044 R∗ . For fixed temperature, the figure 

clearly shows the enhancement of the binding energy as the magnetic field strength 

ωc increases. This enhancement in the donor binding energy can be attributed to the 

parabolic magnetic confinement term  1
4
ω2ρ2  in Eq. (3). For fixed values of magnetic 

field strength ωc , the binding energy decreases when the temperature increases, as 

clearly shown in Fig.5a. Similar behavior of the donor binding energy is displayed in 

Fig.5b for different, ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

 In Fig.6 we have shown the dependence of the donor binding energy on the 

temperature for fixed values of pressure (P=10 Kbar),  ωc = 2 𝑅𝑅𝑅𝑅∗  ,  𝑛𝑛𝑛𝑛 = 0 𝑎𝑎𝑎𝑎∗  and 

various confinements ( ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and ω0 = 5.412 R∗). The binding energy again 

shows a clear decreasing behavior as the temperature of the system increases. The 

dependence of the material parameters like the effective mass m*(P,T) and dielectric 

constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)  on the temperature and pressure explain in Table 1, where m* 

decreases and  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 increases with increasing T which diminish donor impurity binding 

energy (BE) .  

In Fig.7a ,7b, the behavior of the donor binding energy had been shown as a function of 

the magnetic field strength  ωc ,   for different values of parameters : ω0 =

 decreases. These changes in the material 
parameters lead to a reduction in the kinetic 
energy of the electron while the attractive 

٨ 
 

 
 

Figure 8 
  

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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coulomb energy of the electron enhances. 
In Fig.9a and 9b, we have shown the effect 

of changing the temperature, at fixed value of 
the impurity position (d= 0.1 a*), on the binding 
energy. Again, the binding energy shows great 
enhancement as we increase the magnetic field 
strength 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 for fixed values of the parameters: 
Temperature (T= 5, 100, and 200K), Pressure (P=10 
kbar) and confinement frequencies 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 
and  
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 We display in Fig. 10 the donor 
binding energy against the temperature (T), while 
the rest of the physical parameters of the system 
are kept fixed. The binding energy shows an 
important dependence on the temperature, and 

the impurity binding energy EB decreases with 
increasing the temperature.  

In Fig. 11a and 11b, the pressure effect on the 
donor binding energy for d=0.1 *a  against the 
magnetic field strength 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 had been illustrated. 
Fig. 11a obviously shows that the binding energy 
increases as the magnetic field strength enhances 
while the pressure (0, 10, and 20 kbar), T, d, and

١٠ 
 

energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 are fixed. Fig. 11b shows similar 
behavior of the (BE) but for different confinement
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

. Effective-mass approximation 
investigates the pressure effects on m* and 
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parameters of GaAs , ( 𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) )  , in the present  calculations. In Fig. 5 

to Fig.16 , we have shown explicitly the behavior of the donor binding energy (BE) as a 

function of the magnetic field strength  ωc  , taking in consideration the impurity 

position (d), temperature (T), pressure (P) and confinement frequency  ω0 . Fig. 5a, 5b 

show the donor binding energies against the magnetic field strength for three different 

temperatures (5K, 100K, and 200K) and fixed values of pressure, impurity position 

d=0 𝑎𝑎𝑎𝑎∗  and confinement frequency ω0 = 3.044 R∗ . For fixed temperature, the figure 

clearly shows the enhancement of the binding energy as the magnetic field strength 

ωc increases. This enhancement in the donor binding energy can be attributed to the 

parabolic magnetic confinement term  1
4
ω2ρ2  in Eq. (3). For fixed values of magnetic 

field strength ωc , the binding energy decreases when the temperature increases, as 

clearly shown in Fig.5a. Similar behavior of the donor binding energy is displayed in 

Fig.5b for different, ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

 In Fig.6 we have shown the dependence of the donor binding energy on the 

temperature for fixed values of pressure (P=10 Kbar),  ωc = 2 𝑅𝑅𝑅𝑅∗  ,  𝑛𝑛𝑛𝑛 = 0 𝑎𝑎𝑎𝑎∗  and 

various confinements ( ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and ω0 = 5.412 R∗). The binding energy again 

shows a clear decreasing behavior as the temperature of the system increases. The 

dependence of the material parameters like the effective mass m*(P,T) and dielectric 

constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)  on the temperature and pressure explain in Table 1, where m* 

decreases and  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 increases with increasing T which diminish donor impurity binding 

energy (BE) .  

In Fig.7a ,7b, the behavior of the donor binding energy had been shown as a function of 

the magnetic field strength  ωc ,   for different values of parameters : ω0 =

, 
as shown in Table 1 which explain the reason of 
enhancing BE.
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Fig. 9.a 

 
Fig. 9.b 

 
Figure  9 

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  



386

S.  Abuzaid et al.

Int. J. Nano Dimens., 10 (4): 375-390, Autumn 2019

١١ 
 

Fig. 11.a 

 
Fig. 11.b 

 
Figure 11 

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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Figure 10 
  

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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In Fig. 12, the ground state binding energy 
as a function of the pressure for fixed values 
of T=20K, 
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In Fig.11a and 11b, the pressure effect on the donor binding energy for d=0.1𝑎𝑎𝑎𝑎∗ against 

the magnetic field strength ωc had been illustrated. Fig.11a obviously shows that the 

binding energy increases as the magnetic field strength enhances while the pressure (0, 

10, and 20 kbar), T, d, and ω0 = 3.044 𝑅𝑅𝑅𝑅∗ are fixed. Fig.11b shows similar behavior of 

the (BE) but for different confinement  ω0 = 5.412 𝑅𝑅𝑅𝑅∗ . Effective-mass approximation 

investigates the pressure effects on m* and  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 , as shown in Table 1 which explain the 

reason of enhancing BE. 

In Fig.12, the ground state binding energy as a function of the pressure for fixed values 

of T=20K,  d = 0.1 𝑎𝑎𝑎𝑎∗, ωc = 2𝑅𝑅𝑅𝑅∗, and at different confinements: ω0 =

3.044𝑅𝑅𝑅𝑅∗ and ω0 = 5.412 R∗ had been plotted . The binding energy, (BE), shows a great 

enhancement as the pressure increases for fixed values of confinement frequency 

because of increasing m* and    decreasing   𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟  . This effective mass and dielectric 

pressure dependence lead to lower the electron kinetic energy while the coulomb energy 

increases.   

Fig.13a and 13b, the binding energy as a function of magnetic field strength for d=0.5𝑎𝑎𝑎𝑎∗ 

and various confinement, had been shown. We have plotted in Fig.14 the dependence of 

the donor binding energy against the temperature for d=0.5𝑎𝑎𝑎𝑎∗ and various confinement 

frequencies ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and ω0 = 5.412 R∗and the rest parameter are fixed. The 

behavior is in qualitative agreement with the results explained in Fig. 6. 

 In Fig.15a and 15b, we show similar qualitative behaviors as given in figures 

3.10 a and b (d=0 a*). Fig.15a and 15b show the effect of pressure and impurity position 

(d=0.5𝑎𝑎𝑎𝑎∗) on the (BE) as a function of magnetic field strength. The comparison between 

two d-values (d=0 and 0.5 a*) show that, as we increase, d, the binding energy increases 

 and at different 
confinements:  
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 and 
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energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 

had been plotted . The binding energy, (BE), shows 
a great enhancement as the pressure increases for 
fixed values of confinement frequency because of 
increasing m* and    decreasing 
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parameters of GaAs , ( 𝑚𝑚𝑚𝑚∗(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ (𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇) )  , in the present  calculations. In Fig. 5 

to Fig.16 , we have shown explicitly the behavior of the donor binding energy (BE) as a 

function of the magnetic field strength  ωc  , taking in consideration the impurity 

position (d), temperature (T), pressure (P) and confinement frequency  ω0 . Fig. 5a, 5b 

show the donor binding energies against the magnetic field strength for three different 

temperatures (5K, 100K, and 200K) and fixed values of pressure, impurity position 

d=0 𝑎𝑎𝑎𝑎∗  and confinement frequency ω0 = 3.044 R∗ . For fixed temperature, the figure 

clearly shows the enhancement of the binding energy as the magnetic field strength 

ωc increases. This enhancement in the donor binding energy can be attributed to the 

parabolic magnetic confinement term  1
4
ω2ρ2  in Eq. (3). For fixed values of magnetic 

field strength ωc , the binding energy decreases when the temperature increases, as 

clearly shown in Fig.5a. Similar behavior of the donor binding energy is displayed in 

Fig.5b for different, ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

 In Fig.6 we have shown the dependence of the donor binding energy on the 

temperature for fixed values of pressure (P=10 Kbar),  ωc = 2 𝑅𝑅𝑅𝑅∗  ,  𝑛𝑛𝑛𝑛 = 0 𝑎𝑎𝑎𝑎∗  and 

various confinements ( ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and ω0 = 5.412 R∗). The binding energy again 

shows a clear decreasing behavior as the temperature of the system increases. The 

dependence of the material parameters like the effective mass m*(P,T) and dielectric 

constant  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇)  on the temperature and pressure explain in Table 1, where m* 

decreases and  𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 increases with increasing T which diminish donor impurity binding 

energy (BE) .  

In Fig.7a ,7b, the behavior of the donor binding energy had been shown as a function of 

the magnetic field strength  ωc ,   for different values of parameters : ω0 =

 . This effective 
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Figure 12 
  

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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Figure 13 

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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mass and dielectric pressure dependence lead 
to lower the electron kinetic energy while the 
coulomb energy increases.  

Fig. 13a and 13b, the binding energy as a 

function of magnetic field strength for d=0.5 *a  
and various confinement, had been shown. We 
have plotted in Fig. 14 the dependence of the 
donor binding energy against the temperature 
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Fig. 15.a 

 
Fig. 15.b 

 
Figure 15 Fig. 15. The binding energy for d=0.5 *a  against the cω  at fixed temperature (20 K) for three 

pressure values (0, 10, and 20 kbar): a) for ( * *
0 0ω 3.044  ) and  ω 5.412 RR b= = ). 

Fig. 16. The variation of ground-state binding energy for d = 0.5 *a  against the pressure at fixed 
temperature (20K) and cω 2=  for * *

0 0ω 3.044  and  ω 5.412 R .R= =  
Table 1. The dependence of the physical parameters on the pressure and temperature. 

Table 2. The ground state (m=0) energy (in R*) computed by the exact diagonalization method 

against 1
N

 expansion method for various range of magnetic field strength (1γ =  6.75B (Tesla)). 

Table 3. The donor impurity ground state energy (E(R*), and donor impurity binding energy 
(BE(R*)) against the magnetic field strength c  ω  and various impurity position (d) for

*
0 ω 3.044 R= . 

)) against *R), and donor impurity binding energy (BE(*R(The donor impurity energy (E .Table 4
.*

0 ω 5.412 R=and various impurity position (d) for c  ωthe magnetic field strength  
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Figure 14 
  

Fig. 1. The ground state energy of the quantum heterostructure for fixed value of magnetic field 
strength *

c(ω ) 2 R= and *
0parabolic confinment strength  ω 5.412 R= against the number of 

basis  for a) donor impurity at the origin (d = 0 *a ) and b) donor impurity at (d = 0.5 *a ). 
Fig. 2. The ground state energy of the quantum heterostructure for absence and presence of 

the impurity against the magnetic field strength cω  the dashed line with impurity and solid line 
for no impurity cases  for   *

0ω 5.412  .R=  
Fig. 3. The ground-state for fixed value of *

cω 2 R= against the distance for two

( )* *
0 0 0  ω  ,    ω 3.044 R dashed line    ω 5.412   and R= =  the solid line). 

Fig. 4. The ground-state binding energy against c  ω  , where
*

0  (ω 3.044    for dashed line,   andR=   *
0ω 5.412    for solid lineR= ) (a) d = 0 *   a ,   (b) d = 0.1 *a , 

and (c) d=0.5 *a . 
Fig. 5. The binding energy for d=0 * a  at constant pressure (P=10 kbar) as a function of c ω  for 

three temperatures (5K, 100K, and 200K) for  ( ) * *
0 0a  ω 3.044     and  b)  ω 5.412  R .R= =  

Fig. 6. The binding energy change for d=0 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  

with respect to the temperature *
0 for( ω 5.412 R=  

*
0solid line and for ω 3.044 R  for the dashed line ).= .  

Fig. 7. The variation of ground-state binding energy for d=0 *a  against the cω  at fixed 
temperature (20K) and for three different values of pressure (0, 10, and 20 kbar) a) 

* *
0 0 ω 3.044     )  ω 5.412RR b= = . 

Fig. 8.  The variation of ground-state binding energy for d = 0 * a  against the pressure at fixed 
temperature (20K) and *

cω 2 R=  for * *
0 0  (ω 3.044   and      ω 5.412R ).R= =  

Fig. 9. The ground-state binding energy for d=0.1 *a  at constant pressure (P=10 kbar) as a 
function of cω  and for three temperatures (5K, 100K, and 200K): 

* *
0 0  a) ω 3.044     and b) ω 5.412 R .R= =  

Fig. 10. The ground-state binding energy for d = 0.1 *a  at constant pressure (P=10 kba and
*

c ω 2 R= , and temperature *
0 for (ω 3.044   R=  dashed line  

*
0and  ω 5.412 R  for the solid line).=  

Fig. 11. The variation of binding energy for d=0.1 *a  against the cω  at fixed temperature (20K) 
for three pressure values (0, 10, and 20 kbar) a) for * *

0 0 ω 5.412  ) and for ω 3.044 R .R b= =  
Fig. 12. The variation of ground-state binding energy for d=0.1 *a  as a function of the pressure 

at fixed temperature (20K) and *
cω 2 R=  for * *

0 0 ω 3.044   and ω 5.412 RR= = . 
Fig. 13. The binding energy for d=0.5 *a  at constant pressure (P=10 kbar) as a function of cω  for 

three temperatures (5K, 100K, and 200K). * *
0 0 a) ω 3.044   and b)  ω 5.412 R  .R= =  

Fig. 14. The binding energy for d=0.5 * a  at constant pressure (P=10 kbar) and *
c ω 2 R=  against 

temperature *
0 for( ω 3.044 R  for the =  dashed  *

0  line and  for ω 5.412  solid line).R=  
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for d=0.5 *a  and various confinement frequencies 

١٠ 
 

energy of the donor Hamiltonian enhances as the confinement strength (ω0 )  increases 

from 3.044 R* to 5.412R*. This energy behavior agrees with our expectation.  

Furthermore, we have investigated the impurity ground -state eigenenergy (E) and the 

binding energy (BE) against the magnetic field strength ωc , for specific values of ω0 

and versus values of (d). Fig.4a ,4b,4c,4d show the dependences of the ground state 

binding energy (BE) on the magnetic field strength ωc, for  different values of impurity 

distances  : (a) d=0 𝑎𝑎𝑎𝑎∗, (b) d=0.1𝑎𝑎𝑎𝑎∗, and (c) d=0.5𝑎𝑎𝑎𝑎∗ and two confinement frequencies  

(𝜔𝜔𝜔𝜔0 =3.044 R* and 𝜔𝜔𝜔𝜔0 =5.412R*). The binding energy (BE), against the magnetic field 

strength, is greatly reduced as the distances (d) increases as shown by Figs. 2, 3 and 4. 

In addition, the figures demonstrate that the binding energy increases as magnetic field 

 ωc and the parabolic confinement strengths  𝜔𝜔𝜔𝜔0  increase.  

 In Table 3, we have listed the donor impurity energy and binding energy as a 

function of magnetic field strength  ωc for  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and for various values of d. 

For  ω0 = 3.044 𝑅𝑅𝑅𝑅∗  and d=0 a*, the binding energy increases as the magnetic field 

strength increases. This behavior persists for all d-values. However, the binding energy 

decreases as the impurity (d) increases. We can see a significant decrease in the binding 

energy as d increases from d=0.1 a* to d=0.5 a*. For example, at  ω0 = 3.044 𝑅𝑅𝑅𝑅∗ and 

 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 and 
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 ωc = 2 𝑅𝑅𝑅𝑅∗ the binding energy reduces significantly from 4.62499 R* to 2.55177 R*. 

This result is due to the great reduction in the coulomb impurity energy (Eq. 4), as we 

mentioned earlier. The same qualitative behavior can also be observed in Table 4 with 

different quantitative behavior for ω0 = 5.412 𝑅𝑅𝑅𝑅∗. 

To see the effects of pressure and temperature parameters on the binding energy of the 

donor impurity, we have inserted the pressure and temperature dependent material 

 and the rest 
parameter are fixed. The behavior is in qualitative 
agreement with the results explained in Fig. 6.

In Fig. 15a and 15b, we show similar qualitative 
behaviors as given in Figs. 3.10 a and b (d=0 a*). 
Fig. 15a and 15b show the effect of pressure 
and impurity position (d=0.5 *a ) on the (BE) 
as a function of magnetic field strength. The 
comparison between two d-values (d=0 and 
0.5 a*) show that, as we increase, d, the binding 
energy increases due to the great reduction in the 
coulomb attraction energy (Eq. 4). In Fig.16, we 
display the results of the donor binding energy 
for d=0.5 *a . The behavior shown agrees with the 
(BE) behavior given in Fig.8 (for d=0 a* with same 
reason).

CONCLUSION
In conclusion, the exact diagonalization method 

had been used to solve the donor impurity 
Hamiltonian in a heterostructure subjected to 
an applied magnetic field. The ground-state 
energy of GaAs/AlGaAs heterostructure had been 
computed. Furthermore, the impurity effect on 
the ground-state energy had been shown. In 
addition, the influence of the hydrostatic pressure, 
temperature and magnetic field on the binding 
energy of the donor impurity can be summarized 
as follows: the donor impurity binding energy 
is a decreasing function of temperature for 
fixed values of pressure and magnetic field. For 
example the donor impurity binding energy  
decrease from BE=8.3 *R  to BE= 7.8 *R   as we 

١٦ 
 

 
 

Figure 16 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. The binding energy for d=0.5 *a  against the cω  at fixed temperature (20 K) for three 
pressure values (0, 10, and 20 kbar): a) for ( * *

0 0ω 3.044  ) and  ω 5.412 RR b= = ). 
Fig. 16. The variation of ground-state binding energy for d = 0.5 *a  against the pressure at fixed 

temperature (20K) and cω 2=  for * *
0 0ω 3.044  and  ω 5.412 R .R= =  

Table 1. The dependence of the physical parameters on the pressure and temperature. 
Table 2. The ground state (m=0) energy (in R*) computed by the exact diagonalization method 

against 1
N

 expansion method for various range of magnetic field strength (1γ =  6.75B (Tesla)). 

Table 3. The donor impurity ground state energy (E(R*), and donor impurity binding energy 
(BE(R*)) against the magnetic field strength c  ω  and various impurity position (d) for

*
0 ω 3.044 R= . 

)) against *R), and donor impurity binding energy (BE(*R(The donor impurity energy (E .Table 4
.*

0 ω 5.412 R=and various impurity position (d) for c  ωthe magnetic field strength  

increase the temperature from T=5K to T= 200 K 
,respectively calculated  at cω =2.0 *R , *

0 5.412 Rω =   
and pressure P=10 Kbar.Also the donor impurity 
binding energy is increasing function of pressure 
for fixed values of temperature and magnetic 
field. For strong magnetic field strength, the donor 
binding energies enhances significantly for any 
hydrostatic pressure and temperature values as 
we expected.
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