[1] Mishra A., Dubey N., (1994), Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl. Environ. Microbiol. 60: 1101–1105.
[2] Sharma A., Sharma K., (2012), Protection of maize by storage fungi and aflatoxin production using botanicals. Indian J. Nat. Prod. Res. 3: 215-221.
[3] Patten R. C., (1981), Aflatoxins and disease. The Am. J. Trop. Med. Hygiene. 30: 422–425.
[4] Williams J. H., Phillips T. D., Jolly P. E., Stiles J. K., Jolly C. M., Aggarwal D., (2004), Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. The Am. J. Clin. Nutrition. 80: 1106–1122.
[5] Ma Z., Michailides T. J., (2007), Approaches for eliminating PCR inhibitors and designing PCR primers for the detection of phytopathogenic fungi. Crop. Protect. 26: 145–161.
[6] Jones H. C., Chancey J. C., Morton W. A., Dashek W. V., Llewellyn G. C., (1980), Toxic responses of germinating pollen and soybeans to aflatoxins. Mycopathologia 72: 67–73.
[7] Prakash B., Mishra P. K., Kedia A., Dwivedy A. K., Dubey N. K., (2015), Efficacy of some essential oil components as food preservatives against food contaminating molds, aflatoxin B1 production and free radical generation. J. Food Quality. 38: 231–239.
[8] Jayashree T., Subramanyam C., (2000), Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radical Biol. Med. 29: 981–985.
[9] Shanmugam S., Xu J., Boyer C., (2015), Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths. J. Am. Chem. Soc. 137: 9174–9185.
[10] Akther T., Khan M. S., Srinivasan H.,(2018), A facile and rapid method for green synthesis of silver myco nanoparticles using endophytic fungi. Int. J. Nano Dimens. 9: 435-441.
[11] Palithya S., Kotakadi V. S., Pechalaneni J., Challagundla V. N., (2018), Biofabrication of silver nanoparticles by leaf extract of Andrographis serpyllifolia and their antimicrobial and antioxidant activity. Int. J. Nano Dimens. 9: 398-407.
[12] Fatema S., Shirsat M., Farooqui M., Arif P. M., (2019), Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity.Int. J. Nano Dimens. 10: 163-168.
[13] Ghotekar S., (2019), A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 3: 187-200.
[14] Narasimha G.,Sridevi A., Prasad B. D., Kumar B. P.,(2014), Chemical synthesis of zinc oxide (ZnO) nanoparticles and their antibacterial activity against a clinical isolate Staphylococcus aureus. Int. J.Nano Dimens. 5: 337-340.
[15] Dobrucka R., Dlugaszewska J., Kaczmarek M., (2018), Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using of Chelidonium majus extract. Biomed. Microdevices. 20: 5-13.
[16] Jamdagni P., Rana J. S., Khatri P., Nehra K., (2018),Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides. Int. J. Nano Dimens. 9: 198-208.
[17] Senthilkumar N., NandhaKumar E., Priya P., Soni D., Vimalan M., Potheher I. V., (2017), Synthesis, anti-bacterial, anti-arthritic, anti-oxidant and in-vitro cytotoxicity activities of ZnO nanoparticles using leaf extract of Tectona Grandis(L.). New J. Chem. 41: 10347-10356.
[18] Mozdoori N., Safarian S., Sheibani N., (2017), Augmentation of the cytotoxic effects of zinc oxide nanoparticles by MTCP conjugation: Non-canonical apoptosis and autophagy induction in human adenocarcinoma breast cancer cell lines. Mater. Sci. Eng. C. 78: 949–959.
[19] Reddy A. R. N., Srividya L., (2018), Evaluation of in vitro cytotoxicity of zinc oxide (ZnO) nanoparticles using human cell lines. J. Toxicol. Risk Assess. 4: 009, 3 pages.
[20] Wang J., Gao S., Wang S., Xu Z., Wei L., (2018), Zinc oxide nanoparticles induce toxicity in CAL27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy. Int. J. Nanomed. 13: 3441–3450.
[21] Sanaeimehr Z., Javadi I., Namvar F., (2018), Antiangiogenic and antiapoptotic effects of green synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nano. 9: 3, 16 pages.
[22] Rittner M. N., (2002), Nanostructured materials. Am. Ceram. Soc. Bull. 81: 33–36.
[23] Mazzola L., (2003), Commercializing nanotechnology. Nature Biotechnol. 21: 1137–1143.
[24] Hackenberg S., Scherzed A., Harnisch W., Froelich K., Ginzkey C., Koehler C., Hagen R., Kleinsasser N., (2012), Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J. Photochem. Photobiol. B: Biol. 114: 87–93.
[25] Guo D., Wu C., Jiang H., Li Q., Wang X., Chen B., (2008), Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol. B: Biol. 93: 119–126.
[26] Kalemba D., Kunicka A., (2003), Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10: 813–829.
[27] Silva Cde B., Guterres S. S., Weisheimer V., Schapoval E. E., (2008), Antifungal activity of the lemongrass oil and citral against Candida spp. Braz. J. Infect. Dis. 12: 63–66.
[28] Rati E., Prema V., Shantha T., (1987), Modification of Pons's method of estimating aflatoxin B1 in corn, groundnut and groundnut cake. J. Food Sci. Technol. 24: 90–91.
[29] Prasad K., Jha A. K., (2009), ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci. 1: 129–135.
[30] Jha A. K., Kumar V., Prasad K., (2011), Biosynthesis of metal and oxide nanoparticles using orange juice. J. Bionanosci. 5: 162–166.
[31] Prasad K., Jha A. K., (2016), Synthesis of ZnO nanoparticles from goat slaughter waste for environmental protection. Int. J. Cur. Eng. Tech. 6: 147–151.
[32] Jha A. K., Prasad K., (2013), Rose (Rosa sp.) petals assisted green synthesis of gold nanoparticles. J. Bionanosci. 7: 1–6.
[33] Christopher E. E., Ernest E. A., Daniel N. E., (2014), Phytochemical constituents, therapeutic applications and toxicological profile of Cymbopogon citratus stapf (DC) leaf extract. J. Pharmacogn. Phytochem. 3: 133–141.
[34] Gupta A. K., Ganjewala D., (2015), Synthesis of silver nanoparticles from Cymbopogon flexuosus leaves extract and their antibacterial properties. Int. J. Plant. Sci. Ecology. 1: 225–230.
[35] Jha A. K., Prasad K., Prasad K., Kulkarni A. R., (2009), Plant system: Nature's nanofactory. Colloids Surf. B: Biointerf. 73: 219–223.
[36] Shalaka A. M., Chaudhari P. R., Shidore V. B., Kamble S. P., (2011), Rapid biosynthesis of silver nanoparticles using Cymbopogan Citratus (lemongrass) and its antimicrobial activity. Nano-Micro Lett. 3: 189–194.
[37] Guzmán, D., Ruiz-Herrera J., (1997), Relationship between aflatoxin biosynthesis and sporulation in Aspergillus parasiticus. Fungal Genet. Biol. 21: 198–205.
[38] Hopwood D. A., (1988), The Leeuwenhoek lecture, 1987-Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc. Royal Soc. Lond. B. 235: 121–138.
[39] Van Rensburg S. J., Cook-Mozaffari P., Van Schalkwyk D. J., Van der Watt J. J., Vincent T. J., Purchase I. F., (1985), Hepatocellular carcinoma and dietary aflatoxin in Mozambique and Transkei. British J. Cancer. 51: 713–726.
[40] Doyle M. P., Marth E. H., (1978), Degradation of aflatoxin by lactoperoxidase Abbau von aflatoxin durch lactoperoxidase. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 166: 271–273.