Preparation, characterization and photocatalytic degradation of congo red by ZnZrO3/ZnO/ZrO2

Document Type : Reasearch Paper

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Chemistry, Tarbiat Modares University, Box 14115-111, Jalal Aleahmad, Tehran, Iran.

3 Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran.

4 Department of Chemistry, Islamic Azad University, Varamin-Pishva, Iran.

Abstract

Un-doped and Cd-doped ZnZrO3/ZnO/ZrO2 nano composites (CDZZ-NCPs) (CD0-4) were synthesized by the hydrothermal method. The nano composites were characterized by various techniques such as Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-Ray Analysis (EDS). The photocatalytic properties of CDZZ-NCPs (CD0-4) were studied by degradation of congo red (CR) dye under sunlight irradiation. The results reveal unique sunlight photocatalytic ability for the degradation of CR. The experimental demonstrated that the 0.03 g of ZnZrO3/ZnO/ZrO2 nano composites can degradate 50 mL of CR solution (10 ppm) during 5 minutes (up to 91.3%).

Keywords

Main Subjects


[1] Afkhami A., Moosavi R., (2010), Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 174: 398-403.
[2] Takei T., Haramoto R., Dong Q., Kumada N., Yonesaki Y., Kinomura N., Mano T., Nishimoto S., Kameshima Y., Miyake M., (2011),Photocatalytic activities of various pentavalent bismuthates under visible light irradiation. J. Solid State Chem. 184: 2017–2022.
[3] Tang P., Chen H., Cao F., Pan G., (2011),Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts. Catal. Sci. Technol. 1: 1145–1148.
[4] Singh J., Uma S., (2009),Efficient photocatalytic degradation of organic compounds by ilmenite AgSbO3 under visible and UV light irradiation. J. Phys. Chem. C. 113: 12483–12488.
[5] Hatakeyama T., Takeda S., Ishikawa F., Ohmura A., Nakayama A., Yamada Y., Matsushita A., Yea J., (2010),Photocatalytic activities of Ba2RBiO6 (R = La, Ce, Nd, Sm, Eu, Gd, Dy) under visible light irradiation. J. Ceram. Soc. Jpn. 118:  91–95.
[6] Kanhere P., Chen Zh., (2014), A Review on visible light active perovskite-based photocatalysts. Molecules. 19: 19995-20022.
[7] Habibi M-H., Askari E., Habibi M., Zendehdel M., (2013), Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes
for dye-sensitized solar cell. Spectrochim. Acta Part A: Molec. Biomol. Spec. 104: 197–202.
[8] Zhu X., Zhou J., Zhu J., Liu Li. Y., Al-Kassab.T., (2014), Structural characterization and optical properties of perovskite ZnZrO3 nanoparticles. J. Am. Ceram. Soc. 97: 1987-1992.
[9] Oda A. M., Kadhum S. H., Farhood A. S., alkadhum H. A., (2014), Degradation of Congo red Solution by Zinc Oxide/Silver Composite Preheated at Different Temperatures. J. Thermodyn. Catal. 5: 1.
[10] Movahedi M., Mahjoub A. R., Janitabar-Darzi S., (2009), Facile synthesis and characterization of CdTiO3
nanoparticles by Pechini sol–gel method. J. Iran. Chem. Soc. 6:570-577.
[11] Elmorsi T. M., Elsayed M. H., Bakr M. F., (2017), Na doped ZnO nanoparticles assisted photocatalytic degradation of congo red dye using solar light. Am. J. Chem. 7: 48-57.
[12] Chen X., Wu Zh., Liu D., Gao Zh., (2017), Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo Dyes. Nanoscale Res. Lett. 12: 143-148.
[13] White J., Smith W., (2013), A brief  note on the temperature-dependent photocatalytic degradation of congo red using Zinc Oxide. Am. J. Water Res. 1: 66-69.
[14] Karamipour A., Rasouli N., Movahedi M., Salavati H., (2016), A kinetic study on adsorption of congo red from aqueous solution by ZnOZnFe2O4- polypyrrole magnetic nanocomposite. Phys. Chem. Res. 4: 291-301.
[15] Esther Leena Preethi M., Umasankari A., Rekha C. H., (2018), Preparation of nanostructured TiO2-based
photocatalyst by controlling the calcining temperature and Ph. Int. J. Recent Sci.Res.9:25269-25273.
[16] Aghabeygi S., Sharifi Z., Molahasani N., (2017), Enhanced photocatalytic property of nano--ZrO2-SnO2 NPs for photodegradation of azo dye. Digest J. Nanomater. Biostruc. 12: 81– 89.
[17] Sapawe N., (2015), Hybridization of zirconia, zinc and iron supported on HY zeolite 1 as solar-based catalyst for rapid decolorization of various dyes. New J. Chem. 39: 4526-4533.
[18] Jalili Kh., Aghabeygi Sh., Mirza B., (2016),Sonosynthesis and characterization of TiO2/ZrO2 nanocomposite and photocatalytic degradation of congo red dye under UV light. J. Appl.Chem. Res.10: 123-133.
[19] Wang Ch., Le Y., Cheng B., (2014), Fabrication of porous ZrO2 hollow sphere a ditsadsorption performance to congo red in water. Ceram. Int. 40: 10847–10856.
[20] Ouyang J., Zhao. Z., Suib S. L., Yang H., (2019), Degradation of congo red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst: Synergetic effects of Fe2O3. J. Colloid & Interf. Sci. 539: 135-145.
[21] Rooydell R., Wang R-Ch., Brahma S., Ebrahimzadeh F., Liu Ch-Pu., (2015), Synthesis and characterization of bis(acetylacetonato κ-O, O’) [zinc(II)/copper(II)] hybrid organic–inorganic complexes as solid metal organic precursors. Dalton Trans. 44: 7982–7990.
[22] Thananatthanachon T., (2016), Synthesis and characterization of a perovskite barium zirconate (BaZrO3): An experiment for an advanced inorganic chemistry laboratory. J. Chem. Educ. 93: 1120–1123.
[23] Jasim Uddin M., Islam M. A., Haque Sh. A., Hasan S., Amin  M. Sh. A., Rahman M. M., (2012), Preparation of nanostructured TiO2-based photocatalyst by controlling the calcining temperature and pH. Int. Nano Lett. 2: 19-23.
[24] Konstantinou I. K., Albanis T. A., (2004), TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B. 49: 1–14.
[25] Ahmed S., Rasul M. G., Martens W., Brown R., Hashib M. A., (2011),Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: A Review. Water Air Soil Pollut. 215: 3–29.
[26] Rajesh J.T., Praveen K.S., Ramchandra G. K., Raksh V.J., (2007),Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci. Technol. Adv. Mat. 8: 455-459.
[27] Bickley R. I., Vishwanathan V., (1979),Photocatalytically induced fixation of molecular nitrogen by near UV radiation. Nature. 280: 306–308.
[28] Zhao J., Yang X., (2003), Photocatalytic oxidation for indoor air purification: A literature review. Build. Environ. 38: 645–654.
[29] Wang H., Wu Z., Zhao W., Guan B., (2007),Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. Chemosphere. 66: 185–190.
[30] Bhalla A. S., Guo R., Roy R., (2000), The perovskite structure–a review of its role in ceramic science and technology. Mat. Res. Innov. 4: 3–26.
[31] Damjanovic D., (2001),Piezoelectric properties of perovskite ferroelectrics: unsolved problems and future research. Ann. Chim. Sci. Mat. 26: 99–106.
[32] Nuraje N., Su K., (2013),Perovskite ferroelectric nanomaterials. Nanoscale. 5: 8752–8780.
[33] Jia Q., Iwase A., Kudo A., (2014),BiVO4-Ru/SrTiO3: Rh composite Z-scheme photocatalyst for solar water splitting. Chem. Sci. 5: 1513–1519.
[34] Sayama K., Mukasa K., Abe R., Abe Y., Arakawa H., (2001),Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation. Chem. Commun. 23: 2416–2417.
[35] Zhang W. F., Tang J., Ye J., (2006),Photoluminescence and photocatalytic properties of SrSnO3 perovskite. Chem. Phys. Lett. 418: 174–178.
[36] Lin. W. H., Cheng C., Hu C. C., Teng H., (2006),NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2. Appl. Phys. Lett. 89: 211904-211909.
[37] Shi. J., Guo. L., (2012),ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. Mat. Int. 22: 592–615.
[38] Wang. W.N., Soulis. J., Jeffrey Yang. Y., Biswas. P., (2014),Comparison of CO2 photoreduction systems: A review. Aerosol Air Qual. Res. 14: 533–549.
[39] Tang. J., Durrant. J.R., Klug. D.R., (2008),Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc. 130: 13885–13891.
[40] Kudo. A., Miseki. Y., (2009),Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38: 253–278.
[41] Houas. A., Lachheb. H., Ksibi. M., Elaloui. E., Guillard. C., Herrmann. J.-M., (2001),Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B. 31: 145–157.
[42] Turchi. C.S., Ollis. D.F., (1990),Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 122: 178–192.
[43] Konstantinou. I. K., Albanis. T. A., (2004), TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review. Applied Catalysis B: Environmental. 49: 1–14.