[1] Service R. F., (1996), New solar cells seem to have power at the right price. Science. 272: 1744–1745.
[2] Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han L., (2006), Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45: 24–28.
[3] Bang J. H., Kamat P. V., (2009), Quantum dot sensitized solar cells. A tale 2009.of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano. 3: 1467–1476.
[4] Hines M. A., Scholes G. D., (2003), Colloidal PbS nanocrystals with size‐tunable near‐infrared emission: Observation of post‐synthesis self‐narrowing of the particle size distribution. Adv. Mater. 15: 1844−1849.
[5] McDonald S. A., Konstantatos G., Zhang S., Cyr P. W., Klem E. J. D., Levina L., Sargent E. H., (2005), Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4: 138−142.
[6] Kim Y., Bicanic K., Tan H., Ouellette O., Sutherland B. R., Arquer F. P., Jo J. W., Liu M., Sun B., Liu M., Hoogland S., Sargent E. H., (2017), Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Lett. 17: 2349–2353.
[7] Chuang C. H., Brown P. R., Bulovic V., Bawendi M. G., (2014), Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13: 796−801.
[8] Zhitomirsky D., Kramer I. J., Labelle A. J., Fischer A., Debnath R., Jun Pan, Osman M. Bakr, Sargent E. H., (2011), Colloidal quantum dot photovoltaics: The effect of polydispersity. Adv. Mater. 23: 3832−3837.
[9] Arinze E. S., Qiu B., Palmquist N., Cheng Y., Lin Y., Nyirjesy G., Qian G., Thon S. M., (2017), Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference. Opt. Express. 25: 94-101.
[10] Carey G. H., Abdelhady A. L., Ning Z., Thon S. M., Bakr O. M., Sargent E. H., (2015), Colloidal quantum dot solar cells. Chem. Rev. 115: 12732-12763.
[11] Kim J. Y., Voznyy O., Zhitomirsky D., Sargent E. H., (2013), 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 25: 4986–5010.
[12] Maraghechi P., Labelle A. J., Kirmani A. R., Lan X., Adachi M. M., Thon S. M., Hoogland S., Lee A., Ning Z., Fischer A., Amassian A., Sargent E. H., (2013), The donor-supply electrode enhances performance in colloidal quantum dot solar cells. ACS Nano 7: 6111–6116.
[13] Abraham A. G. P., Kramer I. J., Barkhouse A. R., Wang X., Konstantatos G., Debnath R., Levina L., Raabe I., Nazeeruddin M. K., Grätzel M., Sargent E. H., (2010), Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4: 3374–3380.
[14] Ning Z., Zhitomirsky D., Adinolfi V., Sutherland B., Xu J., Voznyy O., Maraghechi P., Lan X., Hoogland S., Ren Y., Sargent E. H., (2013), Graded doping for enhanced colloidal quantum dot photovoltaics. Adv. Mater. 25: 1719–1723.
[15] Johnston K. W., Abraham A. G. P., Clifford J. P., Myrskog S. H., MacNeil D. D., Levina L., Sargent E. H., (2008), Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92: 151115.
[16] Chang J. A., Rhee J. H., Im S. H., Lee Y. H., Kim H. J., Seok S. I., Nazeeruddin M. K., Gratzel M., (2010), High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett. 10: 2609–2612.
[17] Lee Y. L., Huang B. M., Chien H. T., (2008), Highly efficient CdS esensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20: 6903–6905.
[18] Knipp D., Jovanov V., Tamang A., Wagner V., Salleo A., (2017), Towards 3D organic solar cells. Nano Energy. 31: 582-589.
[19] Rostami A., Andalibi S., Seyyedi S. K., Zabihi S., (2013), Enhanced optical absorption in organic solar cells using metal nano particles. Int. J. Nano Dimens.4: 171-175.
[20] Rath A. K., Bernechea M., Martinez L., Arquer F. P., Osmond J., Konstantatos G., (2012), Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics. 6: 529−534.
[21] Soldan D. P., Lee A., Thon S. M., Adachi M. M., Dong H., Maraghechi P., Yuan M., Labelle A. J., Hoogland S., Liu K., Kumacheva E., Sargent E. H., (2013), Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells. Nano Lett. 13: 1502−1508.
[22] Adachi M. M., Labelle A. J., Thon S. M., Lan X., Hoogland S., Sargent E. H., (2013), Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Sci. Rep. 3: 2928-2932.
[23] Mihi A., Beck F. J., Lasanta T., Rath A. K., Konstantatos G., (2014), Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile. Adv. Mater. 26: 443−448.
[24] Xie Z., Liu S., Qin L., Pang S., Wang W., Yan Y., Yao L., Chen Z., Wang S., Du H., Yu M., Qin G. G., (2015), Extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt. Mat. Express. 5: 29–43.
[25] Wang W., Zhang J., Zhang Y., Xie Z., Qin G., (2013), Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications. J. Phys. D: Appl. Phys. 46: 195106.
[26] Xie Z., Wang W., Qin L., Xu W., Qin G. G., (2013), Optical absorption characteristics of nanometer and submicron a-Si : H solar cells with two kinds of nano textures. Opt. Express 21: 18043–18052.
[27] Yulan F., Abay G., Dinku Y. H., Christopher W. M., Kristina T., Lopez R., (2015), Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells. Opt. Express 23: 779-790.