1. Haass C., Selkoe D. J. (2007), Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Molec. Cell Biol. 8: 101-106.
2. Gervais F., Paquette J., Morissette C., Krzywkowski P., Yu M., Azzi M., Lacombe D., Kong X., Aman A., Laurin J., Szarek W. A., Tremblay P., (2007), Targeting soluble Aβ peptide with Tramiprosatefor the treatment of brain amyloidosis. Neurobiol. Aging. 28: 537-547.
3. Salomone S., Caraci F., Leggio G. M., Fedotova J., Drago F., (2012), New pharmacological strategies for treatment of Alzheimer's disease: Focus on disease modifying drugs. Brit. J. Clinical Pharmacol. 73: 504-517.
4. Parvaee E., Bozorgmehr M. R., Morsali A., (2019), Role of repulsive forces on self-assembly behavior of amyloid β-peptide (1-40): Molecular dynamics simulation approach. Physica A: Statistic. Mechan. Applicat. 513: 524-535.
5. Ghule A. V., Kathir K. M., Kumar T. K. S., Tzing S-H., Chang J-Y., Yu C., Ling Y-C., (2007), Carbon nanotubes prevent 2, 2, 2-Trifluoroethanol induced aggregation of protein. Carbon. 45: 1586-1589.
6. Linse, S., Cabaleiro-Lago C., Xue W-F., Lynch I., Lindman S., Thulin E., Radford Sh-E., Dawson K-A., (2007), Nucleation of protein fibrillation by nanoparticles. Proceed. Nat. Acad. Sci. 104: 8691-8696.
7. Baweja L., Balamurugan K., Subramanian V., Dhawan A., (2015), Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study. J. Molec. Graph. Model. 61: 175-185.
8. Bussy C., Ali-Boucetta H., Kostarelos K., (2012), Safety considerations for graphene: lessons learnt from carbon nanotubes. Accoun. Chem. Res. 46: 692-701.
9. Singer S., (1963), The properties of proteins in nonaqueous solvents. Adv. Protein chem. 17: 1-68.
10. Karle I. L., Flippen-Anderson J. L., Uma K., Balaram P., (1993),Unfolding of an α‐helix in peptide crystals by solvation: Conformational fragility in a heptapeptide. Biopolymers: Orig. Res. Biomolec. 33: 827-837.
11. Brambilla D., Verpillot R., Le Droumaguet B., Nicolas J., Taverna M., Kóňa J., Lettiero B., Hashemi SH., De Kimpe L., Canovi M., Gobbi M., Nicolas V., Scheper W., Moghimi S. M., Tvaroška I., Couvreur P., Andrieux K. (2012), PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: Toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano. 6: 5897-5908.
12. Luo J., Wärmländer S. K., Yu C. H., Muhammad K., Gräslund A., Pieter Abrahams J., (2014), The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes. Nanoscale. 6: 6720-6726.
13. Stefansson S., Knight M., Ahn S., (2012), Specific binding of Alzheimer's Aβ peptide fibrils to single-walled carbon nanotubes. Nanomater. Nanotechnol. 2: 1-7.
14. Lehmann M., Stansfield R., (1989), Binding of dimethyl sulfoxide to lysozyme in crystals, studied with neutron diffraction. Biochem. 28: 7028-7033.
15. Shen C.-L., Murphy R. M., (1995), Solvent effects on self-assembly of amyloid-β peptide. Biophys. J. 69: 640-651.
16. Bussi G., Donadio D., Parrinello M., (2007), Canonical sampling through velocity rescaling. J. Chem. Phys. 126: 014101.
17. Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. M., (1998), LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18: 1463-1472.
18. Miyamoto S., Kollman P. A., (1992), Settle: An analytical version of the SHAKE and RATTLE algorithm for rigidwater models. J. Comput. Chem. 13: 952-962.
19. Essmann, U., Perera L.,Berkowitz M. L., (1995), A smooth particle mesh Ewald method. J. Chem. Phys. 103: 8577-8593.
20. Paravastu A. K., Leapman R. D., Yau W. M., Tycko R., (2008), Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. Proc. Natl. Acad. Sci. U. S. A. 105: 18349-18354.
21. Meinhardt J., Sachse C., Hortschansky P., Grigorieff N., Fändrich M., (2009), Aβ (1-40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J. Molec. Biolog. 386: 869-877.
22. Honarparvar B., Skelton A. A., (2015), Molecular dynamics simulation and conformational analysis of some catalytically active peptides. J. Molec. Model. 21: 100-106.
23. Jahanbin F., Bozorgmehr M. R., Morsali A., Beyramabadi S. A., (2019), The effect of different alcohols on the Asp23-Lys28 and Asp23-Ala42 salt bridges of the most effective peptide in Alzheimer's disease: Molecular dynamics viewpoints. J. Molec. Graph. Model. 86: 199-206.
24. Liu, R., McAllister C., Lyubchenko Y., Sierks M. R., (2004), Residues 17–20 and 30–35 of beta‐amyloid play critical roles in aggregation. J. Neurosc. Res. 75: 162-171.
25. Gu L., Ngo S., Guo Z., (2012), Solid-support electron paramagnetic resonance (EPR) studies of Aβ40 monomers reveal a structured state with three ordered segments. J. Biolog. Chem. 287: 9081-9089.
26. Zhang S., Zhang S., Iwata K., Lachenmann M. J., Peng J. W., Li S., Stimson E. R., Lu Y., Felix A. M., Maggio J. E., Lee J. P., (2000), The Alzheimer's peptide Aβ adopts a collapsed coil structure in water. J. Struc. Biol. 130: 130-141.
27. Lim K. H., Collver H. H., Le Y. T., Nagchowdhuri P., Kenney J. M., (2007), Characterizations of distinct amyloidogenic conformations of the Aβ (1–40) and (1–42) peptides. Biochem. Biophys. Res. Communic. 2: 443-449.