[1] Hentrich M., (2015), Methodology and Coronary Artery Disease Cure, SSRN.
[2] Zurada J., (1992), Introduction to Artificial Neural Systems, West Publishing Company, USA.
[3] McCulloch W. S., Pitts W., (1943), A logical calculus of the ideas immanent in nervous activity. The bull. Math. Biophys. 5: 115–133.
[4] Ota Y., Wilamowski B. M., (1994), VLSI Implementation of a Programmable Current-Mode Neural Network, Proceedings: Intellig. Eng. Sys. Through Artific. Neural Networks, ANNIE'94 Conf., St. Louis, 4: 71-76.
[5] Cauwenberghs G., Bayoumi M., (1999), Learning on Silicon., Adaptive VLSI Neural Systems, Kluwer Academic Publishers.
[6] Wojtyna R., Talaska T., (2006), Transresistance CMOS neuron for adaptive neural networks implemented in hardware, Bull. Pol. Acad. Sci. 54: 443-448.
[7] Hosseinzadeh Namin A., Leboeuf K., Muscedere R., Wu H., Ahmadi M., (2009), Efficient hardware implementation of the hyperbolic tangent sigmoid function, IEEE Int. Symp. Circ. Sys. 2117-2120.
[8] Azizian S., Fathi K., Mashoufi B., Derogarian F., (2011), Implementation of a programmable neuron in 0.35μm CMOS process for multi-layer ANN applications. Eurocon-Int. Conf. Comp. Tool. 1-4.
[9] Khodabandehloo G., Mirhassani M., Ahmadi M., (2012), Analog implementation of a novel resistive-type sigmoidal neuron. IEEE-Transact. Very Large Scale Integ. (VLSI) Systems 20: 750-754.
[10] Shamsi J., Amirsoleimani A., Mirzakuchaki S., Ahmade A., Alirezaee Sh., Ahmadi M., (2015), Hyperbolic tangent passive resistive-type neuron. 2015 IEEE- Int. Symp. Circ. Sys. (ISCAS). 581-584.
[11] Azizian S., Aziz Aghchegala V., Azizian S., Sefidgar Dilmaghani M., (2019), CMOS bulk-controlled fully programmable neuron for artificial neural networks. IETE J. Res. 65: 320-328.
[12] Liu C., Cheng H., (2013), Carbon nanotubes: Controlled growth and application. Mater. Today. 16: 19-28.
[13] Avouris P., Afzali A., Appenzeller J., Chen J., Freitag M., Klinke C., Lin Y.-M., Tsang J. C., (2004), Carbon nanotube electronics and optoelectronics. Tech. Digest-IEEE Int. Elec. Dev. Meeting (IEDM). 525-529.
[14] Franklin A. D., (2013), Electronics: The road to carbon nanotube transistors. Nature. 498: 443–444.
[15] Rahnamaei A., Zare Fatin G., Eskandarian A., (2019), Design of a low power high speed 4-2 compressor using CNTFET 32 nm technology for parallel multipliers. Int. J. Nano Dimens. 10: 114-124.
[16] Rahnamaei A., Zare Fatin G., Eskandarian A., (2019), High speed Radix-4 Booth scheme in CNTFET technology for high performance parallel multipliers. Int. J. Nano Dimens. 10: 281-290.
[17] Yousefi R., Saghafi K., Moravvej-Farshi M. K., (2010), Application of neural space mapping for modeling ballistic carbon nanotube transistors. Iranian J. Elec. Elec. Eng. 6: 70-76.
[18] Abdollahzadeh Badelbo R., Farokhi F., Kashaniniya A., (2013), Efficient parameters selection for CNTFET modelling using Artificial Neural networks. Int. J. Smart Elec. Eng. 2: 217-222.
[19] Zhang J., Chang Sh., Wang H., He J., Huang O., (2014), Artificial Neural network based CNTFETs modeling. Appl. Mech. Mater. 667: 390-395.
[20] Friesz A. K., Parker A. C., Zhou Ch., Philip Wong H.-S., Deng J., (2007), A Biomimetic carbon nanotube synapse circuit. Biomed. Eng. Soc. (BMES) Annual Fall Meeting.
[21] Joshi J., Zhang J., Wang Ch., Hsu Ch.-Ch., Parker A. C., Zhou Ch., Ravishankar U., (2011), A biomimetic fabricated carbon nanotube synapse for prosthetic applications. IEEE/NIH Life Sci. Sys. Appl. Workshop (LiSSA).
[22] Najari M., El-Grour T., Jelliti S., Mousa Hakami O., (2016), Simulation of a spiking neuron circuit using carbon nanotube transistors. Proceed. Fifth Saudi Int.Meeting on Front. Phys. (SIMFP2016).
[23] Fathi A., Azizian S., Sharifan N., (2017), Sensors and amplifiers: Sensor output signal amplification systems, In Handbook of Research on Nanoelectronic Sensor Modeling and Applications, 423-504, IGI Global.