[1] Alijani H., Tayyebi S., Hajjar Z., Shariatinia Z., Soltanali S., (2017), Prediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system, Int. J. Nano Dimens. 8: 298-306.
[2] Beitollahi H., Safaei M., Tajik S., (2019), Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review. Int. J. Nano Dimens. 10: 125-140.
[3] Zhang F. J., Chen M. L., Oh W. C., (2010), Photoelectrocatalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation. New Carbon Mater. 25: 348–356.
[4] Muruganandham M., Shobana N., Swaminathan M., (2006), Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2. J. Mol. Catal. A Chem. 246: 154-161.
[5] Kochana J., Adamski J., (2012), Detection of NADH and ethanol at a graphite electrode modified with titania sol-gel/Meldola’s Blue/MWCNT/Nafion nanocomposite film. Cent. Eur. J. Chem. 10: 224-231.
[6] Larijani M. M., Safa S., (2014), Increase of hydrogen storage capacity of CNTs by using transition metal, metal oxide-CNT nanocomposites. Acta Phys. Pol. A. 126: 732-735.
[7] Mohiuddin T. M. G., Lombardo A., Nair R. R., Bonetti A., Savini G., Jalil R., Bonini N., Basko D. M., Galiotis C., Marzari N., Novoselov K. S., Geim A. K., Ferrari A. C., (2009), Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B: Condens. Matter. 79: 205433.
[8] Graupner R., (2007), Raman spectroscopy of covalently functionalized single‐wall carbon nanotubes. J. Raman Spectrosc. 38: 673–683.
[9] Cuesta A., Dhamelincourt P., Laureyns J., Martinez-Alonso A., Tascon J. M. D., (1994), Raman microprobe studies on carbon materials. Carbon. 32: 1523–1532.
[10] Rao A. M., Chen J., Richter E., Schlecht U., Eklund P. C., Haddon R. C., Venkateswaran U. D., Kwon Y. K., Tomanek D., (2001), Effect of van der Waals Interactions on the Raman modes in single walled Carbon nanotubes. Phys. Rev. Lett. 86: 3895–3898.
[11] Bandarian M., Shojaei A., Rashidi A. M., (2011), Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: Effect of surface functionality of nanotubes. Polym. Int. 60: 475-482.
[12] Roy D., Bhattacharyya S., Rachamim A., Plati A., Saboungi M. L., (2010), Measurement of interfacial shear strength in single wall carbon nanotubes reinforced composite using Raman spectroscopy. J. Appl. Phys. 170: 043501.
[13] Ajayan P. M., Suhr J., Koratkar N., (2006), Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. J. Mater. Sci. 41: 7824-7829.
[14] Rausch J., Zhuang R. C., Mader E., (2010), Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Comp. Part A. 41: 1038-1046.
[15] Tang Q. Y., Shafiq I., Chan Y. C., Wong N. B., Cheung R., (2010), Study of the dispersion and electrical properties of Carbon nanotubes treated by surfactants in Dimethylacetamide. J. Nanosci. Nanotechnol. 10: 4967-4974.
[16] Zhang H. B., Lin G. D., Zhou Z. H., Dong X., Chen T., (2002), Raman spectra of MWCNTs and MWCNT-based H2 adsorbing system. Carbon. 40: 2429-2436.
[17] Corio P., Santos P. S., Brar V. W., Samsonidze Ge. G., Chou S. G., Dresselhaus M. S., (2003), Potential dependent surface Raman spectroscopy of single wall carbon nanotube films on platinum electrodes. Chem. Phys. Lett. 370: 675-682.
[18] Souza Filho A. G., Jorio A., Samsonidze Ge. G., Dresselhaus G., Saito R., Dresselhaus M. S., (2003), Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnol. 14: 1130-1139.
[19] Dresselhaus M. S., Dresselhaus G., Saito R., Jorio A., (2005), Raman spectroscopy of carbon nanotubes. Phys. Rep. 409: 47-99.
[20] Hadavand B. S., Mahdavi Javid K., Gharagozlou M., (2013), Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater. Des. 50: 62–67.
[21] Chaudhary D., Singh S., Vankar V. D., Khare N., (2017), A ternary Ag/TiO2/CNT photoanode for efficient photo electrochemical water splitting under visible light irradiation. Int. J. Hydrog. Energy. 42: 7826-7835.
[22] Laurenzi S., Botti S., Rufoloni A., Santonicola M. G., (2014), International symposium on dynamic response and failure of composite materials, DRaF2014 fracture mechanisms in epoxy composites reinforced with carbon nanotubes. Procedia Eng. 88: 157-164.
[23] Hadjiev V. G., Warren G. L., Sun L., Davis D. C., Lagoudas D. C., Sue H. J., (2010), Raman microscopy of residual strains in carbon nanotube/epoxy composites. Carbon. 48: 1750-1756.
[24] McCloy C., McNally T., Brennan G. P., Erskine J., (2007), Thermosetting polyurethane multiwall carbon nanotube composites. J. Appl. Polym. Sci. 105: 1003-1011.
[25] Saito R., Dresselhaus G., Dresselhaus M. S., (1993), Electronic structure of double layer graphene tubules. J. Appl. Phys. 73: 494-500.
[26] Cooper C. A., Young R. J., Halsall M., (2001), Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A. 32: 401-411.
[27] Rao A. M., Richter E., Bandow S., Chase B., Eklund P. C., Williams K. A., Fang S., Subbaswamy K. R., Menon M., Thess A., Smalley R. E., Dresselhaus G., Dresselhaus M. S., (1997), Diameter-selective Raman scattering from vibrational modes in Carbon nanotubes. Science. 275: 187-191.
[28] Grimmer C. S., Dharan C. K. H., (2010), Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer composites. Compos. Sci. Technol. 70: 901-908.
[29] Lee J. E., Ahn G., Shim J., Lee Y. S., Ryu S., (2012), Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3: 1024-1029.
[30] Vejpravova J., Pacakova B., Endres J., Mantlikova A., Verhagen T., Vales V., Frank O., Kalbac M., (2015), Graphene wrinkling induced by monodisperse nanoparticles: Facile control and quantification. Sci. Rep. 5: 15061-15067.