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Abstract
Hematite (α-Fe2O3) nanoparticle was synthesized using organometallic compound - ferrocene carboxaldehyde 
through solventless solid state thermal decomposition technique. The crystal structure, magnetic and 
morphological properties of the decomposed material were studied using powder X-ray diffraction (XRD), 
superconducting quantum interference device (SQUID) magnetometry, 57Fe Mössbauer spectroscopy, 
scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray 
spectroscopy (EDX) techniques. Structural study confirmed that the synthesized material is hematite with 
hexagonal phase and good crystallinity. The temperature-dependent magnetization measurement exhibited 
the Morin transition - the yardstick for hematite formation. Mössbauer spectroscopic study confirmed the 
purity of phase of the synthesized material. The SEM study observed mostly the agglomerated tiny particles 
along with some ring-shaped surface structures. The TEM study of the synthesized material showed that the 
highest distribution of the particles with ~5 nm size. The observed EDX spectra confirmed the existence of 
Fe and O in the synthesized material. The solid state reaction process leading to hematite on decomposition 
of ferrocene carboxaldehyde has also been proposed. Present study describes a simple process for the 
preparation of pure hematite nanoparticle by solventless method.
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INTRODUCTION
Hematite (α-Fe2O3) - a nontoxic and environ-

mentally compatible n-type semiconductor is the 
most stable iron oxide under ambient conditions. 
This material has attracted considerable research 
attention for many years owing to its physical 
properties and wide application potential in the 
fields like, magnetic devices, catalysis, pigments, 
gas sensors, photo anodes, batteries [1–7]. 
Magnetism observed in hematite is interesting 
and is widely discussed in the scientific literature 

[8]. Below ~260 K (Morin transition temperature), 
hematite becomes anti-ferromagnetic as spins 
are arranged in anti-parallel fashion along the 
rhombohedral (111) axis, whereas above 260 K a 
canted spin arrangement with respect to the basal 
(111) plane gives rise to a weak ferromagnetism 
in hematite [9, 10]. Since last several years, efforts 
are given to synthesize hematite nanomaterials of 
different size and morphology to enhance/improve 
their performance in various applications. Various 
types of hematite nanoparticles with different 
morphology have been developed: nanocrystals 
[11], polyhedral nanoparticle [12], nanorods [13], 

http://creativecommons.org/licenses/by/4.0/.
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nanoribbons [14], nanotubes [15], nanostructured 
microspheres [16], hollow nanostructures [17] 
and nanoplates [18]. Various methods, including 
thermal decomposition [19], sol–gel [20], ionic 
liquid-assisted synthesis [21], hydrothermal 
method [22], co-precipitation method [23] and 
solvent-less growth [24] have been developed to 
synthesize hematite nanoparticle. Among these 
methods, the technique of thermal decomposition 
becomes increasingly important as recent 
developments in the preparation of iron oxide 
nanoparticle by thermal decomposition of iron 
containing complexes have significantly improved 
the quality of traditional iron oxide nanoparticle 
in terms of size tunability, monodispersity and 
crystalline structure [19, 25–29]. However, the 
ease of synthesis through thermal decomposition 
is limited owing to the toxicity, complexity of the 
decomposition reaction and air-sensitivity of the 
precursors as well as the requirement of high 
reaction temperatures. These led the synthesis of 
stable iron oxide nanoparticles with controlled size 
from suitable precursors through simple reaction 
procedures to remain challenging [30].

Among the iron-based organic precursors 
used for thermal decomposition reported so 
far, ferrocene or bis(
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Fig. 1. Schematic diagram of ferrocene carboxaldehyde, (C11H10FeO).



190

A. Dey et al.

Int. J. Nano Dimens., 11 (2): 188-198, Spring 2020

(99.999%) nitrogen (N2) and oxygen (O2) gases 
as the reaction environments. In each case of 
reaction environments, the thermogravimetry 
was continued till the thermal decomposition 
of the precursor was complete. UHP (99.999%) 
nitrogen gas was used as the protective gas 
in the instrument. The crucible used for the 
decomposition study was made of alumina. The 
residual materials obtained after the completion 
of decomposition of the precursor in nitrogen 
and oxygen gas atmospheres, hereafter denoted 
as Fc-N and Fc-O accordingly, were collected for 
physical characterizations.

Methods
The decomposed materials were studied with 

various physical characterization techniques like 
powder X-ray diffraction (XRD), superconducting 
quantum interference device (SQUID) 
magnetometry, 57Fe Mössbauer spectroscopy, 
scanning electron microscopy (SEM), transmission 
electron microscopy (TEM) and energy-dispersive 
X-ray spectroscopy (EDX). The XRD study was 
done with PANalytical’s Emperian powder 
diffractometer equipped with PIXcell3D detector 
with a Cu-Kα radiation source. The XRD data 
were analyzed by the Rietveld method using the 
FullProf program. The average crystallite size (D) of 
the samples was estimated from the XRD patterns 
using the Scherer formula [45]: 

where D is the crystallite size of the hematite 
nanoparticle (in nm), K is a constant related to the 
crystallite shape (K = 0.9), λ is the wavelength of 
Cu-Kα radiation, β is the full width at half maximum 
(FWHM) of the diffraction peak (in radians) and 
θ is the diffraction angle (in radians). The mean 
crystallite size was estimated based on the full 
pattern analysis. The magnetic property was 
investigated by a SQUID magnetometer (MPMS, 
Quantum Design) under the applied magnetic 
field of 0.1 Tesla sweeping in 300 K – 10 K – 300 
K temperature cycle. 57Fe Mössbauer spectra 
were recorded using a conventional constant-
acceleration spectrometer with a 57Co Mössbauer 
source. The morphologies and particle sizes of the 
synthesized material were studied by scanning 
electron microscopy (SEM) and transmission 
electron microscopy (TEM). The EDX study was 
made to identify the elements present in the 
material produced. The SEM observations were 
performed using JEOL JSM-6480 instrument with 
accelerating voltage of 20 kV equipped with the 
EDX detector from IXRF. The TEM observations 
were performed using a JEOL JEM 3010 instrument 
with 300 kV accelerating voltage equipped with 
2k×2k OriusTM 833 SC200D Gatan CCD camera.

RESULTS AND DISCUSSIONS
Thermogravimetry

Iron oxides were produced by thermal 
decomposition of ferrocene carboxaldehyde 
in nitrogen and oxygen reaction atmospheres 
inside a thermogravimetric analyzer. Fig. 2 

Fig. 2. Thermogravimetry profile of ferrocene carboxaldehyde in oxygen atmosphere.
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shows the thermal behaviour of the precursor 
under two different reaction atmospheres. The 
thermogravimetry profile of the precursor in 
nitrogen atmosphere shows that the thermal 
decomposition, initiated at ~420K followed by 
a single step process with maximum thermal 
decomposition occurring at ~520K, was completed 
at ~560K leaving 22% residual mass (Fc-N). On 
the other hand, the thermal decomposition 
in oxygen atmosphere, initiated at the same 
temperature but followed by a three-step process, 
was completed at ~700K leaving 36% residual 
mass (Fc-O). The significant differences noted in 
these two thermogravimetry profiles of ferrocene 
carboxaldehyde obtained in inert and oxidative 
atmospheres reflect the role of the reaction 
atmosphere on the solid state reaction of the 
precursor.  

It is to be noted here that in inert atmosphere 
the sublimation of ferrocene initiates at ~400 
K and thermal decomposition of ferrocene in 
the presence of oxalic acid starts at ~335 K 
[19], while thermal decomposition of ferrocene 
carboxaldehyde initiates at ~420 K. Acetyl 
ferrocene with substituted –COCH3 group 
decomposes at ~450K [43]. On analysis of the 
presently observed thermogravimetry results, 
substitution of aldehyde (–CH=O) group on one of 
the cyclopentadienyl rings of ferrocene molecule 
restricts the sublimation process and increases 
the overall thermal stability of the compound by 
elevating the thermal decomposition temperature 
both in nitrogen and oxygen atmospheres in 
comparison to that of ferrocene. 

Structural analysis 
The phase and structure of the decomposed 

materials - Fc-N and Fc-O were identified 
using powder X-ray diffraction technique at 
room temperature. Fig. 3 represents the room 
temperature powder XRD patterns of Fc-N and 
Fc-O. The observed XRD patterns have been 
found to match with the standard JCPDS nos. 
24-72 and 13-534, 89-2867 and 00-065-0731 for 
hematite, cementite and magnetite, respectively 
for Fc-N and with the standard JCPDS nos. 24-72 
and 13-534 for Fc-O. The Rietveld refinements of 
the XRD profiles are shown in Fig. 3 where the 
dots represent the observed data and the lines 
correspond to the calculated patterns. The curves 
at the bottom represent the difference between 
the observed and calculated patterns. The vertical 

bars show the Bragg diffraction positions. From 
the analysis of the XRD pattern for Fc-N, we find 
that it is a multiphase material where the phases 
are hematite (15.8%), cementite (43.3%) and 
magnetite (40.8%). Apart from these, a broad 
and intense peak at 2θ = 26o was observed which 
may be assigned to the formation of graphite. The 
formation of the graphite phase of carbon during 
thermal decomposition has often been reported 
owing to the catalysis of the elementary iron 
nanoparticles [46,47]. The average crystallite size 
D calculated using Scherer formula for hematite, 
cementite and magnetite are 85.0 nm, 41.2 nm 
and 13.5 nm, respectively. 

On the other hand, for Fc-O a close agreement 
between the observed and calculated XRD 
patterns establishes the single-phase formation 
of the material in the hexagonal structure of 
hematite with R -3c space group. The refined cell 
parameters for Fc-O are as follows: a = 5.0349(1) 
Å, c = 13.7450(3) Å which are in good agreement 
with the reference patterns JCPDF nos. 24-72 and 
13-534. The diffraction peaks corresponding to 
(012), (104), (110), (113), (024), (116), (018), (214), 
(300), and (220) planes are in good relationship 
with the standard XRD pattern of hematite 
structure. No other peak owing to other crystal 
phase or impurity was observed in the recorded 
XRD pattern, which reveals that the synthesized 
Fc-O material consists of pure α-Fe2O3 phase. The 
average crystallite size D calculated using Scherer 
formula is 561.8(3) nm. 

As we are interested in the iron oxides available 
in pure phase only, in the following sections we 
will discuss the characterization studies carried 
out for Fc-O only. 

Magnetic studies
Fig. 4 represents the temperature dependence 

of magnetization (M) for Fc-O in the 300 K-10 
K-300 K temperature cycle obtained from SQUID 
measurements. From this figure, one can see 
that while cooling, the M value starts with 
slight increase (0.043 emu/gm to 0.045emu/
gm) followed by a rapid decrease at ~260 K 
which continues until ~240 K and then M value 
very slowly decreases (~0.033 emu/gm) with 
decreasing temperature. On the other hand, while 
heating the M(T) plot retraces the same path till 
~240 K and then increases rapidly above ~240 
K till 270 K. On heating above this temperature 
up to room temperature (300 K), the M(T) value 
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gradually increases tending towards a near 
saturation value (0.062 emu/gm). Thus, the 
present M(T) plots indicate a magnetic transition 
around ~260 K during cooling-heating cycle which 
can be easily recognized as Morin transition [9] 
- the characteristic behaviour of hematite. Thus, 
Fc-O is hematite which is in complete agreement 
with the result observed from XRD study.

With thermal cycling, i.e., cooling →heating, 
there has been a constant (~14%) increase in 
magnetization values at 300 K for Fc-O. The 

irreversible changes observed in the M(T) plots as 
well as in the magnetization values with thermal 
cycling may be due to domain reorganization 
[48,49]. Thermal cycling through Morin 
temperature modifies the domain configuration. 
Most of the hematite crystals lose their domain 
pattern on cooling [50]. A single-domain state is 
often observed below the Morin temperature, and 
if this is warmed to room temperature again, a 
new domain pattern is seen. Consecutive thermal 
cycling ultimately gives rise to a stable domain at 

A

B

Fig. 3. Powder XRD pattern of the residue materials obtained on thermal decomposition of ferrocene carboxaldehyde in different 
atmospheres: (a) nitrogen, (b) oxygen.
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room temperature for hematite [49].
When compared with the saturation 

magnetization values of hematite available in 
the literature (ranges from 0.03 emu/gm [51] 
to 5.1 emu/gm [52]), the room temperature 
magnetization (tending towards saturation) value 
(0.06 emu/gm) observed for Fc-O after heating is 
low. This low value of magnetization observed may 
be due to fact that different synthetic methods 
provide different particle sizes, morphologies and 
surface structures which significantly affect the 
magnetic properties of the materials obtained.

57Fe Mössbauer spectroscopy enables one to 
identify the iron compound(s) present in a sample 
as constituent(s) as well as provides a quantitative 
estimation of the iron site(s) in the solid [53]. 
Each such magnetic constituent, depending 
upon their spin state, gives different component 
in the Mössbauer spectrum. Analysis of such 
spectra leads to the identification of different iron 
containing constituent compounds present in the 
sample. In this light, 57Fe Mössbauer spectra of 
Fc-O was recorded at room temperature (Fig. 5) 
to confirm the existence of only hematite – the 
magnetic constituent in Fc-O as seen through XRD 
and magnetic studies. The Mössbauer spectrum 
was fitted to Lorenzian line with isomer shift with 
respect to α-iron 
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The appearance of single sextet confirms the presence of pure phase of hematite in Fc-O. 

Thus, the Mössbauer spectroscopic study confirms that the thermally synthesized material Fc-

O is purely hematite in complete agreement with the XRD and SQUID results. 
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The surface morphology of Fc-O sample was studied using SEM. The SEM images 
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parameter values correspond to Fe3+ in a hematite 
structure [19,54]. The appearance of single sextet 
confirms the presence of pure phase of hematite 
in Fc-O. Thus, the Mössbauer spectroscopic study 
confirms that the thermally synthesized material 
Fc-O is purely hematite in complete agreement 
with the XRD and SQUID results.

SEM, EDX and TEM observations
The surface morphology of Fc-O sample was 

studied using SEM. The SEM images obtained 
at different regions of the sample surface under 
different magnifications are shown in Figs 6. It is 
seen that the most of the surface is covered with 
thin ring shaped structures (Fig. 6a) whereas in rest 
of the surface there are agglomeration of many 
tiny particles mostly having round edges (insert of 
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Fig. 4. Temperature dependence of magnetization (M) of the decomposed material
(Fc-O) under 0.1 Tesla magnetic fields in a cooling and heating cycle.
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inner and outer diameter as 0.08μm and 2.08μm, 
respectively. In some areas of the sample surface, 
the tiny particles are arranged in chain-like fashion 
(Fig. 6b). The size distribution and the morphologies 
of Fc-O sample were irregular in nature and found 
to represent relatively rough surfaces with a dense 
and non-uniformly distributed various sized grains 
(Fig. 6c). The different morphologies observed 
from SEM images may be due to differences in 
the local reaction environment and/or cooling 
process.

In order to identify the elements present in 
the different surface areas of the sample, the EDX 
spectrum was obtained from different parts of the 
SEM images. Circular spots on the SEM images of 
Fig. 6 are some of the selected areas from where 
EDX spectrum was taken. A representative EDX 
spectrum is shown as Fig. 6d. It has been noted 
that all such spectra exhibited characteristic peaks 
for Fe and O only at the same positions although 
there are slight differences in the intensity. 
Thus, the EDX study confirms that the obtained 
nanoparticles are pure in nature. 

The particle size of the Fc-O sample was 
determined by TEM analysis. The TEM images of 
Fc-O were obtained at different resolutions. Figs. 
7a and 7b represent two selected TEM images at 

different resolutions from where it is clear that 
Fc-O material consists of agglomeration of tiny 
dots of various shapes and sizes and the diameter 
of the smallest particles lie in the nanometre range. 
From the particle size histogram created from the 
TEM image analysis shown as insert of Fig. 7, the 
average particle size is found to be ~5nm. The 
large difference in the particle size obtained from 
TEM study and the average crystallite size using 
XRD data analysis should be due to agglomeration 
as is evidenced. Analysis of the average crystallite 
size from the XRD data uses the broadening of 
the diffraction lines in the well-known Scherer 
formula. This formula is rather poor when it comes 
to the particles of sizes above 50 nm.  One can 
always get a result as it is a mathematical formula, 
but the result should be meaningful. There can be 
challenges when it comes to agglomerates and 
aggregates. TEM allows to measure every particle 
individually, therefore is less statistical.

Possible solid state reaction
Ferrocene has a “sandwich structure” of two 

parallel cyclopentadienyl rings with an iron in 
the centre between these rings while ferrocene 
carboxaldehyde is a substituted ferrocene 
derivative.  It is known that ferrocene sublimates at 

Fig. 5. 57Fe Mössbauer spectrum of the decomposed material (Fc-O) recorded at room temperature.
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448 K and at temperatures above ~773 K, gaseous 
ferrocene decomposes spontaneously to form 
metallic iron and some volatile gases e.g., H2, CH4, 
C5H6. [41]. Considering the strength of the different 
bonds present in ferrocene carboxaldehyde, it 
is quite obvious that before the breakage of the 
Fe-C bonds, the –CH=O bond will break. Thus, at 
this temperature range solid or liquid-like iron 

particles are present in the reaction medium and 
the metallic iron will then react with the available 
oxygen giving rise to hematite [41]. Angermann 
and Töffer [55] reported the formation of hematite 
through thermal decomposition of iron oxalate in 
air atmosphere. From the characterization studies 
of the decomposed material Fc-O obtained from 
ferrocene carboxaldehyde, it is understood that 

Fig. 6. SEM images of the decomposed material (Fc-O): (a) the sample surface is covered with thin ring shaped structures; (b) the tiny 
particles arranged in chain-like fashion; (c) non-uniformly distributed various sized grains; (d) EDX spectrum. The white spots on the 

SEM images indicate the areas where the EDX studies were made.
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on heating ferrocene carboxaldehyde in oxygen 
atmosphere at ~800 K completely decomposes 
to hematite. Considering the compositional 
analysis of the decomposed material obtained 
from the XRD and EDX studies and the amount 
of iron concentration in the material as seen 
through Mössbauer spectroscopy, the possible 
thermal decomposition reaction of ferrocene 
carboxaldehyde in oxygen may be understood 
through the following equation:

4C11H10FeO + 45O2 (g) → 2Fe2O3 + 44CO2 (g) + 
20H2 (g)

where ‘g’ and ‘s’ denote gaseous and solid 
substances, respectively. The observed residual 
mass from the thermogravimetry profile is 36.85%, 
whereas the calculated value of residual mass 
from the proposed reaction pathway is 37.3%. 
Thus, the proposed reaction pathway indicates 
the formation of α-Fe2O3 (hematite) as a result 
of decomposition of ferrocene carboxaldehyde 
completed at ~800 K. CO, if produced during 
the reaction, may be deoxidized to oxygen and 
carbon by metallic iron liberated from thermal 
decomposition of ferrocene carboxaldehyde [56] 
and the metallic iron in turn then reacts with the 
liberated oxygen giving rise to hematite. This may 
be an additional reaction leading to hematite. The 
observed Mössbauer spectrum of Fc-O did not 
exhibit any trace of iron carbide (Fe3C) or free iron 
(Fe). Thus, the proposed reaction correctly leads to 

the formation of hematite (α-Fe2O3) due to thermal 
decomposition of ferrocene carboxaldehyde in 
oxygen atmosphere. 

CONCLUSIONS
Hematite (α-Fe2O3) nanoparticle with average 

size of ~5 nm has been successfully synthesized 
by solid state thermal decomposition of ferrocene 
carboxaldehyde in oxidative atmosphere. The 
structural, magnetic and morphological properties 
of the synthesized sample were studied. The 
observed XRD pattern confirmed that the 
material corresponds to the pure hematite 
phase. The temperature dependent magnetic 
measurements of the material exhibited the 
Morin transition confirming the hematite nature 
of the synthesized sample. Room temperature 
Mössbauer spectroscopic study supplemented 
the existence of single phase hematite in the 
material produced. The present study describes 
a novel and simple process for the preparation of 
pure hematite nanoparticle. On the other hand, 
the study also enlightens the effect of reaction 
atmosphere on the thermal synthesis. In order 
to unearth the nature of the undergoing solid 
state reaction in the thermal decomposition of 
ferrocene carboxaldehyde under oxygen and 
nitrogen atmospheres, study on the kinetics 
of reaction is getting our interest. Considering 
the presently observed results, the solventless 

Fig. 7. TEM images of the decomposed material (Fc-O) at two different resolutions. Insert shows the particle size histogram.
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thermal decomposition of metal-containing 
organic complexes may be a suitable method for 
preparing metal oxide nanomaterials.
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