[1] Iijima S., (1991), Synthesis of Carbon Nanotubes. Nature. 354: 56–58.
[2] Robertson J., (2007), Growth of nanotubes for electronics. Mater. Today. 10: 36–43.
[3] Javey A., (2008), The 2008 Kavli Prize in Nanoscience: Carbon Nanotubes. ACS Nano. 2: 1329–1335.
[4] Chen Y., Yin S., Li Y., Cen W., Li J., Yin H., (2017), Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation. Appl. Surf. Sci. 404: 364–369.
[5] Hsieh S. C., Wang S. M., Li F. Y., (2011), A theoretical investigation of the effect of adsorbed NO2 molecules on electronic transport in semiconducting single-walled carbon nanotubes. Carbon. 49: 955–965.
[6] Talla J. A., (2012), Ab initio simulations of doped single-walled carbon nanotube sensors. Chem. Phys. 392: 71-77.
[7] Xu H., Li l., Fan G., Chu X., (2018), DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput. Theor. Chem. 1131: 57–68.
[8] Harris P. J. F., (1999). Carbon Nanotubes and Related Structures, Cambridge University Press: Cambridge.
[9] Soltani A., Ramezani Taghartapeh M., Tazikeh Lemeski E. b., Abroudi M., Mighani H., (2013), A theoretical study of the adsorption behavior of N2O on single-walled AlN and AlP nanotubes. Superlattices Microst. 58: 178–190.
[10] Soltani A., Ramezani Taghartapeh M., Mighani H., Pahlevani A. A., Mashkoor R., (2012), A first-principles study of the SCN− chemisorption on the surface of AlN, AlP, and BP nanotubes. Appl. Surf. Sci. 259: 637– 642.
[11] Zhi C., Bando Y., Tang C., Golberg D., (2010), Boron nitride nanotubes. Mater. Sci. Eng. Rep. 70: 92–111.
[12] Bahrami Panah M., Vaziri R., (2015), Structure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods. Int. J. Nano Dimens. 6: 157-165.
[13] Weng Q., Wang X., Wang X., Bando Y., Golberg D., (2016), Functionalized hexagonal boron nitride nanomaterials: Merging properties and applications. Chem. Soc. Rev. 45: 3989-4012.
[14] Ciofani G., Raffa V., Menciassi A., Cuschieri A., (2008), Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 101: 850-858.
[15] Panchal M. B., Upadhyay S., (2014), Boron nitride nanotube-based biosensor for acetone detection: Molecular structural mechanics-based simulation. Mol. Simulat. 40: 1035-1042.
[16] Kalay S., Yilmaz Z., Sen O., Emanet M., Kazanc E., Çulha M., (2015), Synthesis of boron nitride nanotubes and their applications. Beilstein J. Nanotechnol. 6: 84-102.
[17] Mortazavifar A., Raissi H., Akbari A., (2019), DFT and MD investigations on the functionalized boron nitride nanotube as an effective drug delivery carrier for Carmustine anticancer drug. J. Mol. Liq. 276: 577–587.
[18] Meyer N., Bekaert K., Pirson D., Devillers M., Hermans S., (2012), Boron nitride as an alternative support of Pd catalysts for the selective oxidation of lactose. Catal. Commun. 29: 170-174.
[19] Khaleghian M., Azarakhshi F., (2019), Theoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes. Int. J. Nano Dimens. 10: 105-113.
[20] Ghosh D., Ghosh B., Hussain S., Chaudhuri S., Bhar R., Pal A. K., (2012), Novel BN/Pd composite films for stable liquid petroleum gas sensor. Appl.Surf. Sci. 263: 788-794.
[21] Zhai T., Li L., Ma Y., Liao M., Wang X., Fang X., Yao J., Bando Y., Golbeng D., (2011), One-Dimensional inorganic nanostructures: Synthesis field-emission and photodetection. Chem. Soc. Rev. 40: 2986-3004.
[22] Vessally E., Dehbandi B., Edjlali L., (2016), DFT study on the structural and electronic properties of Pt-doped boron nitride nanotubes. Russ. J. Phys. Chem. A. 90: 1217-1223.
[23] Esrafili M. D., Saeidi N., (2017), N2O + SO2 reaction over Si- and C-doped boron nitride nanotubes: A comparative DFT study. Appl. Surf. Sci. 403: 43-50.
[24] Esrafili M. D., Nematollahi P., (2017), Potential of Si-doped boron nitride nanotubes as a highly active and metal-free electrocatalyst for oxygen reduction reaction: A DFT study. Syn. Met. 226: 129-138.
[25] Javan M. B., Soltani A., Ghasemi A. S., Lemeski E. T., Gholami N., Balakheyli H., (2017), Ga-doped and antisite double defects enhance the sensitivity of boron nitride nanotubes towards Somanand Chlorosoman. Appl. Surf. Sci. 411: 1-10.
[26] Makiabadi B., Zakarianezhad M., Ekrami-Kakhki M. S., Zareye S., (2019), Adsorption of the nitrosamine and thionitrosamine molecules as carcinogen compounds on the BN and B3Al N nanotubes: ADFT study. Phosphorus. Sulfur Relat. Elem. 194: 57-63.
[27] Fan G. H., Zhu S., Li X. K., Ni K., Xu H., (2017), Ab initio investigation of pristine and doped single-walled boron nitride nanotubes as acetone sensor. Comput. Theor. Chem. 1115: 208–216.
[28] Abdoli M., Saeidian H., Kakanejadifard A., (2017), The interaction of propargylamine based sulfonamide with pristine, Al and Si-doped boron nitride nanotubes: A theoretical study. Comput. Theor. Chem. 1115: 323–329.
[29] Hamadanian M., Fotooh F. K., (2014), Density functional study of Al/N co-doped (10, 0) zigzag single-walled carbon nanotubes as CO sensor. Comp. Mater. Sci. 82: 497–502.
[30] Esrafili M. D., Saeidi N., (2017), Healing of a carbon-vacancy defect in silicon carbide nanotubes by CO molecules: A DFT study. Chem. Phys. Lett. 671: 49-55.
[31] Singh N. B., Bhattachary B., Mondal R., Sarkar U., (2016), Nickel cluster functionalised carbon nanotube for CO molecule detection: A theoretical study. Mol. Phys. 114: 671-680.
[32] Baei M., (2013), Theoretical Study of (CO) n=1, 2 Adsorption on the (6, 0) Zigzag Single-walled Carbon Nanotube. Fuller Nanotube Carbon N. 21: 117–124.
[33] Esrafili M. D., Saeidi N., (2016), DFT calculations on the catalytic oxidation of CO over Si-doped (6, 0) boron nitride nanotubes. Struct. Chem. 27: 595-604.
[34] Basharnavaz H., Habibi-Yangjeh A., (2017), A DFT study for adsorption of CO on Ni, Pd, and Pt atoms doped (7, 0) boron nitride nanotube. Mol. Phys. 116: 204-211.
[35] Sun M., Xu J., Cui Yu., Wu G., Zhang H., Li Z., (2013), Theoretical study of adsorption CO molecule on Palladium-doped Boron Nitride nanotubes. Adv. Mater. Res. 662: 233-238.
[36] Ahmadi-Peyghan A., Soltani A., Pahlevani A. A., Kanani Y., Khajeh S., (2013), A first-principles study of the adsorption behavior of CO on Al- and Ga-doped single-walled BN nanotubes. Appl. Surf. Sci. 270: 25–32.
[37] Xie Y., Huo Y. P., Zhang J. M., (2012), First-principles study of CO and NO adsorption on transition metals doped (8, 0) boron nitride nanotube. Appl. Surf. Sci. 258: 6391-6397.
[38] Rezazadeh M., Ghiasi R., Jamehbozorgi S., (2018), Solvent effects on the structure and spectroscopic properties of the second-generation anticancer drug carboplatin: A theoretical insight. J. Struct. Chem. 85: 245-251.
[39] Fereidoni S., Ghiasi R., Pasdar H., (2018), Theoretical study of the solvent effect on the electronic and vibrational properties of [CpFe(CO)2(NCS)] and [CpFe(CO)2(SCN)] linkage isomers. J. Struct Chem. 59: 1058-1066.
[40] Rahimi M., Ghiasi R., (2018), Solvent effect on isomerization reaction of [(η5-C5H5)(CO)2ReC(C2HB10H10)(C6H5)] carbene complex to [(η5-C5H5)(CO)(COC2HB10H10)ReCC6H5] carbyne
complex: A computational investigation. J. Mol. Liq. 265: 164-171.
[41] Becke A. D., (1993), Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98: 5648–5652.
[42] Feller D., (1996), The role of databases in support of computational chemistry calculations. J. Comp. Chem. 17: 1571–1586.
[43] Frisch M., Trucks G., Schlegel H. B., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G., (2009), Gaussian 09, Revision A. 02, Gaussian. Inc, Wallingford, CT.
[44] Boys S. F., Bernardi F., (1970), The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19: 553-566.
[45] Thiemens M. H., Trogler W. C., (1991), Nylon production: An unknown source of atmospheric nitrous oxide. Science. 251: 932-934.
[46] Miertus S., Scrocco E., Tomasi J., (1981), Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55: 117-129.
[47] Reed A. E., Curtiss L. A., (1988), Weinhold F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88: 899-926.
[48] Boyle N., Tenderholt A., Langner K., (2008), Cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29: 839-845.
[49] El-Barbary A. A., Eid Kh. M., Kamel M. A., Taha H. O., Ismail G. H., (2015), Adsorption of CO, CO2, NO, and NO2 on Boron Nitride Nanotubes: DFT Study. J. Surf. Eng. Mater. Adv. Technol. 5: 154-161.
[50] Rezazadeh M., Ghiasi R., Jamehbozorgi S., (2018), Influence of solvent and electric field on the structure and IR, 31P NMR spectroscopic properties of a titanocene-benzyne complex. J. Appl. Specrosct. 85: 526-534.
[51] Mahmoudzadeh G., Ghiasi R., Pasdar H., (2019), Solvent influence on structure and electronic properties of Si2Me4: A computational investigation using PCM-SCRF method. Russ. J. Phys. Chem. A. 93: 2244-2249.